Home
Class 9
MATHS
Factorise : 25(2a - b)^(2) - 81 b^(2)...

Factorise :
`25(2a - b)^(2) - 81 b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 25(2a - b)^2 - 81b^2 \), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ 25(2a - b)^2 - 81b^2 \] ### Step 2: Recognize the difference of squares Notice that this expression is in the form of \( A^2 - B^2 \), where: - \( A = 5(2a - b) \) - \( B = 9b \) ### Step 3: Apply the difference of squares formula We can use the difference of squares formula, which states that \( A^2 - B^2 = (A - B)(A + B) \). Applying this, we have: \[ (5(2a - b) - 9b)(5(2a - b) + 9b) \] ### Step 4: Simplify each factor Now, we simplify each factor: 1. For the first factor: \[ 5(2a - b) - 9b = 10a - 5b - 9b = 10a - 14b \] 2. For the second factor: \[ 5(2a - b) + 9b = 10a - 5b + 9b = 10a + 4b \] ### Step 5: Write the factored form Thus, the expression can be factored as: \[ (10a - 14b)(10a + 4b) \] ### Step 6: Factor out common terms We can factor out a common factor from each term: 1. From \( 10a - 14b \), we can factor out 2: \[ 2(5a - 7b) \] 2. From \( 10a + 4b \), we can factor out 2: \[ 2(5a + 2b) \] ### Final Factored Form Thus, the final factored form of the expression is: \[ 2(5a - 7b) \cdot 2(5a + 2b) = 4(5a - 7b)(5a + 2b) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 25a^(2) - 9b^(2)

Factorise : 25a^2 - 36b^2

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 1 - 25 (a+b)^2

Factorise : x^(2) - 25

Factorise : (5a - 3b)^2 - 16b^2

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : (5a - 2b)^2 - (2a - b)^2

Factorise : 4a^(2)b - 9b^(3)

Factorise : (iv) 8 (2a + 3b)^(3) - 12 (2a + 3b)^2