Home
Class 9
MATHS
Factorise : 50a^(3) - 2a...

Factorise :
`50a^(3) - 2a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(50a^3 - 2a\), we can follow these steps: ### Step 1: Identify the common factor First, we look for common factors in both terms of the expression \(50a^3\) and \(-2a\). The common factor here is \(2a\). ### Step 2: Factor out the common factor We can factor out \(2a\) from the expression: \[ 50a^3 - 2a = 2a(25a^2 - 1) \] ### Step 3: Recognize the difference of squares Now, we notice that \(25a^2 - 1\) is a difference of squares. We can rewrite it using the identity \(a^2 - b^2 = (a + b)(a - b)\). Here, we can let: - \(a = 5a\) - \(b = 1\) ### Step 4: Apply the difference of squares identity Using the difference of squares identity, we can factor \(25a^2 - 1\): \[ 25a^2 - 1 = (5a + 1)(5a - 1) \] ### Step 5: Combine the factors Now we can combine this with the factor we took out earlier: \[ 50a^3 - 2a = 2a(25a^2 - 1) = 2a(5a + 1)(5a - 1) \] ### Final Answer Thus, the fully factorised form of \(50a^3 - 2a\) is: \[ \boxed{2a(5a + 1)(5a - 1)} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 2a^(3) - 50a

Factorise : a^(3) - 27

Factorise : 2a^(7) - 128a

Factorise : 1-8a^(3)

Factorise : a^(3) + 2a^(2) - a-2

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : a^(3) -(27/a^(3))

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36