Home
Class 9
MATHS
Factorise : 9(a-2)^(2) - 16(a+2)^(2)...

Factorise :
`9(a-2)^(2) - 16(a+2)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 9(a-2)^2 - 16(a+2)^2 \), we can follow these steps: ### Step 1: Recognize the difference of squares The expression \( 9(a-2)^2 - 16(a+2)^2 \) can be recognized as a difference of squares, which has the form \( A^2 - B^2 \). Here, we can let: - \( A = 3(a-2) \) - \( B = 4(a+2) \) ### Step 2: Apply the difference of squares formula The difference of squares can be factored using the formula: \[ A^2 - B^2 = (A + B)(A - B) \] Substituting \( A \) and \( B \) into this formula gives: \[ (3(a-2) + 4(a+2))(3(a-2) - 4(a+2)) \] ### Step 3: Simplify each factor Now, we simplify each factor: 1. **For \( A + B \)**: \[ 3(a-2) + 4(a+2) = 3a - 6 + 4a + 8 = 7a + 2 \] 2. **For \( A - B \)**: \[ 3(a-2) - 4(a+2) = 3a - 6 - 4a - 8 = -a - 14 \] ### Step 4: Combine the factors Now we can write the factorised form: \[ (7a + 2)(-a - 14) \] ### Step 5: Factor out the negative sign To make it look more standard, we can factor out the negative sign from the second factor: \[ -(7a + 2)(a + 14) \] ### Final Answer Thus, the factorised form of the expression \( 9(a-2)^2 - 16(a+2)^2 \) is: \[ -(7a + 2)(a + 14) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise 98 ( a+b)^(2) - 2

Factorise : 9(x-y)^(2) - (x+2y)^(2)

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : (a + 2b)^2 - a^2

Factorise : (5a - 2b)^2 - (2a - b)^2

Factorise : 16-9x^2

Factorise : (5a - 3b)^2 - 16b^2

Factorise : 3a^(2) - 5a + 2