Home
Class 9
MATHS
Factorise : a^(4) -1...

Factorise :
`a^(4) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise \( a^4 - 1 \), we can follow these steps: ### Step 1: Recognize the difference of squares We can express \( a^4 - 1 \) as a difference of squares: \[ a^4 - 1 = (a^2)^2 - (1)^2 \] ### Step 2: Apply the difference of squares formula Using the formula \( x^2 - y^2 = (x - y)(x + y) \), we can factor \( a^4 - 1 \): \[ a^4 - 1 = (a^2 - 1)(a^2 + 1) \] ### Step 3: Factor \( a^2 - 1 \) further Notice that \( a^2 - 1 \) is also a difference of squares: \[ a^2 - 1 = (a - 1)(a + 1) \] ### Step 4: Combine all factors Now we can combine all the factors we have found: \[ a^4 - 1 = (a^2 - 1)(a^2 + 1) = (a - 1)(a + 1)(a^2 + 1) \] ### Final Answer Thus, the complete factorization of \( a^4 - 1 \) is: \[ a^4 - 1 = (a - 1)(a + 1)(a^2 + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) - 7a^(2) + 1

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : 16a^(4) - b^(4) .

Factorise : a^(4) - 343 a

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise 81 x ^(4) - 16y^(4)

Factorise : 3a^(2) -1-2a

Factorise : 1-8a^(3)

Factorise : (iv) a^4 - 625

Factorise : 16a^(4) + 54a