Home
Class 9
MATHS
Factorise : (a+b)^(3) -a-b...

Factorise :
`(a+b)^(3) -a-b`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a+b)^{3} - a - b\), we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ (a+b)^{3} - a - b \] ### Step 2: Group the terms Notice that we can group the terms as follows: \[ (a+b)^{3} - (a + b) \] ### Step 3: Factor out \((a+b)\) Now, we can factor out \((a+b)\) from the expression: \[ = (a+b) \left( (a+b)^{2} - 1 \right) \] ### Step 4: Recognize the difference of squares The term \((a+b)^{2} - 1\) is a difference of squares, which can be factored further: \[ = (a+b) \left( (a+b - 1)(a+b + 1) \right) \] ### Final Factored Form Putting it all together, we have: \[ = (a+b)(a+b-1)(a+b+1) \] Thus, the final factorised form of \((a+b)^{3} - a - b\) is: \[ (a+b)(a+b-1)(a+b+1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : a b^(2) - (a-1) b-1 .

Factorise (2a+ b)^(3) - (a+ 2b)^(3)

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)

Factorise : 25(2a - b)^(2) - 81 b^(2)

Factorise : (a + 2b)^2 - a^2

Factorise 98 ( a+b)^(2) - 2

Factorise : a^(3) + b^(3) + a + b .