Home
Class 9
MATHS
Factorise : a(a-1)-b(b-1)...

Factorise :
`a(a-1)-b(b-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a(a-1) - b(b-1) \), we will follow these steps: ### Step 1: Expand the expression First, we will expand both terms in the expression. \[ a(a-1) = a^2 - a \] \[ b(b-1) = b^2 - b \] So, the expression becomes: \[ a(a-1) - b(b-1) = (a^2 - a) - (b^2 - b) \] ### Step 2: Simplify the expression Now, we simplify the expression: \[ = a^2 - a - b^2 + b \] \[ = a^2 - b^2 - a + b \] ### Step 3: Rearrange the expression Next, we rearrange the terms: \[ = a^2 - b^2 - a + b \] ### Step 4: Factor using the difference of squares We notice that \( a^2 - b^2 \) is a difference of squares, which can be factored as: \[ a^2 - b^2 = (a-b)(a+b) \] So we rewrite the expression: \[ = (a-b)(a+b) - (a-b) \] ### Step 5: Factor out the common term Now we can factor out the common term \( (a-b) \): \[ = (a-b)((a+b) - 1) \] ### Final Result Thus, the factorised form of the expression \( a(a-1) - b(b-1) \) is: \[ (a-b)(a+b-1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) -1

Factorise : a(3a - 2)-1

Factorise : a^(6) - b^(6)

Factorise : a b^(2) - (a-1) b-1 .

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : a^(2)-81(b-c)^(2)

Factorise : 64 - a^(3)b^(3)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)