Home
Class 9
MATHS
Factorise : 9a^(2) + 3a - 8b - 64b^(2)...

Factorise :
`9a^(2) + 3a - 8b - 64b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(9a^2 + 3a - 8b - 64b^2\), we can follow these steps: ### Step 1: Rearrange the expression Rearranging the terms can sometimes help in identifying common factors. We can write the expression as: \[ 9a^2 + 3a - (8b + 64b^2) \] ### Step 2: Factor out common terms Notice that \(8b + 64b^2\) can be factored. We can factor out \(8b\): \[ 9a^2 + 3a - 8b(1 + 8b) \] ### Step 3: Rewrite \(9a^2 + 3a\) Next, we can factor out \(3a\) from the first two terms: \[ 3a(3a + 1) - 8b(1 + 8b) \] ### Step 4: Recognize the difference of squares Now, we can rewrite the expression in a form that resembles the difference of squares. We can express \(9a^2\) as \((3a)^2\) and \(64b^2\) as \((8b)^2\): \[ (3a)^2 + 3a - (8b)^2 \] ### Step 5: Use the identity \(a^2 - b^2 = (a + b)(a - b)\) We can apply the difference of squares identity: \[ (3a + 8b)(3a - 8b) + 3a \] ### Step 6: Combine like terms Now we can combine the terms: \[ (3a - 8b)(3a + 8b) + 3a \] ### Step 7: Final factorization Finally, we can factor out \(3a - 8b\): \[ (3a - 8b)(3a + 8b + 1) \] Thus, the factorized form of the expression \(9a^2 + 3a - 8b - 64b^2\) is: \[ (3a - 8b)(3a + 8b + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 9x^(2) + 3x - 8y - 64y^(2)

Factorise a^(2) + b- ab - a

Factorise : 4a^(2) - 12a + 9 - 49b^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : a b^(2) - (a-1) b-1 .

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : 7b^(2) - 8b +1

Factorise : (iii) a^(2) - ab (1-b) - b^(3)

Factorise : a^(2)b^(2) + 8ab - 9