Home
Class 9
MATHS
Factorise : a^(2) + b^(2) - c^(2) - d^...

Factorise :
`a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 + b^2 - c^2 - d^2 + 2ab - 2cd \), we can follow these steps: ### Step 1: Group the terms We start by rearranging and grouping the terms in the expression: \[ a^2 + b^2 + 2ab - c^2 - d^2 - 2cd \] ### Step 2: Recognize the perfect square The first three terms \( a^2 + b^2 + 2ab \) can be recognized as a perfect square: \[ a^2 + b^2 + 2ab = (a + b)^2 \] Similarly, we can factor the last three terms: \[ -c^2 - d^2 - 2cd = -(c^2 + d^2 + 2cd) = -(c + d)^2 \] ### Step 3: Rewrite the expression Now, we can rewrite the expression using the perfect squares we identified: \[ (a + b)^2 - (c + d)^2 \] ### Step 4: Apply the difference of squares formula Now we can apply the difference of squares formula, which states that \( x^2 - y^2 = (x + y)(x - y) \). Here, let \( x = a + b \) and \( y = c + d \): \[ (a + b)^2 - (c + d)^2 = (a + b + c + d)(a + b - (c + d)) \] ### Step 5: Simplify the expression Now, we simplify the second term: \[ a + b - (c + d) = a + b - c - d \] ### Final Factorized Form Thus, the final factorized form of the expression is: \[ (a + b + c + d)(a + b - c - d) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) - b^(2) - c^(2) +2bc

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)

Factorise: a^(2) - b^(2) - 4ac + 4c^(2)

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorise : a^(2)b^(2) + 8ab - 9

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : (iv) ax^(2) + b^(2) y - ab^(2) - x^(2) y

Factorise : 4a^(2) - (4b^(2) + 4bc + c^(2))