Home
Class 9
MATHS
Factorise : 4x^(2) - 12ax - y^(2) - z^...

Factorise :
`4x^(2) - 12ax - y^(2) - z^(2) - 2yz + 9a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 4x^2 - 12ax - y^2 - z^2 - 2yz + 9a^2 \), we can follow these steps: ### Step 1: Rearranging the Terms We start by rearranging the terms in the expression: \[ 4x^2 - 12ax + 9a^2 - (y^2 + z^2 + 2yz) \] ### Step 2: Recognizing Perfect Squares Next, we can identify the perfect squares in the expression: - \( 4x^2 \) can be written as \( (2x)^2 \) - \( 9a^2 \) can be written as \( (3a)^2 \) - The expression \( y^2 + z^2 + 2yz \) can be recognized as \( (y + z)^2 \) So we rewrite the expression: \[ (2x)^2 - 12ax + (3a)^2 - (y + z)^2 \] ### Step 3: Completing the Square Now, we can complete the square for the first part: \[ (2x - 3a)^2 - (y + z)^2 \] ### Step 4: Applying the Difference of Squares Formula Now we have a difference of squares, which can be factored using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ (2x - 3a - (y + z))(2x - 3a + (y + z)) \] ### Step 5: Final Factorization Thus, the final factorization of the expression is: \[ (2x - 3a - y - z)(2x - 3a + y + z) \] ### Summary of the Factorization The factorized form of \( 4x^2 - 12ax - y^2 - z^2 - 2yz + 9a^2 \) is: \[ (2x - 3a - y - z)(2x - 3a + y + z) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (v) x^(2) - 2xy + y^(2) - z^(2)

Factorise : 4x^2 - 81 y^2

Factorise : x^(2) - 3ax - 88a^(2)

Factorise : x^(2) + 6x + 9 - 4y^(2)

Factorise : 4a^(2) - 12a + 9 - 49b^(2)

Factorise : (vi) x^(2) - y^(2) - 2yz - z^(2)

Factorise : (iv) 5x^(2) - 4xy - 12y^(2)

Factorise : 16x^(2) - y^(2) + 4yz - 4z^(2)

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)