Home
Class 9
MATHS
Factorise : (a^(2) -1)(b^(2) -1) + 4ab...

Factorise :
`(a^(2) -1)(b^(2) -1) + 4ab`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a^{2} - 1)(b^{2} - 1) + 4ab\), we will follow these steps: ### Step 1: Expand the Expression We start by expanding the product \((a^{2} - 1)(b^{2} - 1)\). \[ (a^{2} - 1)(b^{2} - 1) = a^{2}b^{2} - a^{2} - b^{2} + 1 \] Now, we can rewrite the original expression: \[ a^{2}b^{2} - a^{2} - b^{2} + 1 + 4ab \] ### Step 2: Rearrange the Terms Next, we rearrange the terms to group similar ones: \[ a^{2}b^{2} - a^{2} - b^{2} + 4ab + 1 \] ### Step 3: Recognize a Perfect Square Now, we can recognize that \(a^{2}b^{2} + 4ab + 1\) can be expressed as a perfect square. We can rewrite it as: \[ (ab)^{2} + 2 \cdot ab \cdot 2 + 1^{2} = (ab + 2)^{2} \] Thus, we have: \[ (ab + 2)^{2} - (a + b)^{2} \] ### Step 4: Apply the Difference of Squares Formula Now we can apply the difference of squares formula, which states that \(x^{2} - y^{2} = (x - y)(x + y)\). Let \(x = ab + 2\) and \(y = a + b\). Therefore, we can write: \[ (ab + 2 - (a + b))(ab + 2 + (a + b)) \] ### Step 5: Simplify the Factors Now we simplify each factor: 1. For the first factor: \[ ab + 2 - a - b = ab - a - b + 2 \] 2. For the second factor: \[ ab + 2 + a + b = ab + a + b + 2 \] ### Final Factorised Form Thus, the final factorised form of the expression is: \[ (ab - a - b + 2)(ab + a + b + 2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 3a^(2) -1-2a

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 4a^(2)b - 9b^(3)

Factorise : a^(2) + (1)/(a^(2)) - 18

Factorise : a(3a - 2)-1

Factorise : 4a^2 - 8ab

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : 1- 100a^2

Factorise : a^(2)b^(2) + 8ab - 9

Factorise : a-b-4a^(2) + 4b^(2)