Home
Class 9
MATHS
Factorise : x^(4) + x^(2) +1...

Factorise :
`x^(4) + x^(2) +1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^4 + x^2 + 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 + x^2 + 1 \] ### Step 2: Recognize a pattern We can notice that \( x^4 + x^2 + 1 \) can be rewritten in a way that allows us to use the difference of squares. We can express \( x^4 + x^2 + 1 \) as: \[ (x^2)^2 + (1)^2 + (x^2 \cdot 1) \] ### Step 3: Create a perfect square We can rewrite the expression as: \[ (x^2 + 1)^2 - (x^2) \] This is because: \[ (x^2 + 1)^2 = x^4 + 2x^2 + 1 \] So, we subtract \( x^2 \) to get: \[ x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2 \] ### Step 4: Apply the difference of squares Now we can apply the identity \( a^2 - b^2 = (a - b)(a + b) \): Let \( a = x^2 + 1 \) and \( b = x \): \[ (x^2 + 1 - x)(x^2 + 1 + x) \] ### Step 5: Simplify the factors Now we simplify the two factors: 1. \( x^2 + 1 - x = x^2 - x + 1 \) 2. \( x^2 + 1 + x = x^2 + x + 1 \) ### Final Answer Thus, the factorised form of \( x^4 + x^2 + 1 \) is: \[ (x^2 - x + 1)(x^2 + x + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 4x^(4) - x^(2) - 12x - 36

Factorise : x^(2) - 25

Factorise : x^(4) + x^(2)y^(2) + y^(4)

Factorise : (v) x^4 - 5x^(2) - 36

Factorise : 4x^(4) + 9y^(4) + 11x^(2)y^(2)

Factorise : 5 + 7x - 6x^(2)

Factorise : x^(2) + (a^(2) -1)/(a)x-1

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : (a) x^(4)+4x^(2)+16 " " (ii) x^(4)+4