Home
Class 9
MATHS
Factorise : (x^(2) + 4y^(2) - 9z^(2))^...

Factorise :
`(x^(2) + 4y^(2) - 9z^(2))^(2) - 16x^(2)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (x^2 + 4y^2 - 9z^2)^2 - 16x^2y^2 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (x^2 + 4y^2 - 9z^2)^2 - 16x^2y^2 \] Notice that \( 16x^2y^2 \) can be rewritten as \( (4xy)^2 \). Thus, we have: \[ (x^2 + 4y^2 - 9z^2)^2 - (4xy)^2 \] ### Step 2: Apply the difference of squares formula This expression is in the form of \( a^2 - b^2 \), where: - \( a = x^2 + 4y^2 - 9z^2 \) - \( b = 4xy \) Using the difference of squares identity \( a^2 - b^2 = (a + b)(a - b) \), we can factor it as follows: \[ (x^2 + 4y^2 - 9z^2 + 4xy)(x^2 + 4y^2 - 9z^2 - 4xy) \] ### Step 3: Simplify each factor Now we simplify each factor: 1. The first factor: \[ x^2 + 4y^2 - 9z^2 + 4xy \] This can be rearranged as: \[ x^2 + 4xy + 4y^2 - 9z^2 = (x + 2y)^2 - 9z^2 \] 2. The second factor: \[ x^2 + 4y^2 - 9z^2 - 4xy \] This can be rearranged as: \[ x^2 - 4xy + 4y^2 - 9z^2 = (x - 2y)^2 - 9z^2 \] ### Step 4: Apply the difference of squares again Now we have two factors: 1. \( (x + 2y)^2 - (3z)^2 \) 2. \( (x - 2y)^2 - (3z)^2 \) Again, we can apply the difference of squares formula: 1. For \( (x + 2y)^2 - (3z)^2 \): \[ (x + 2y - 3z)(x + 2y + 3z) \] 2. For \( (x - 2y)^2 - (3z)^2 \): \[ (x - 2y - 3z)(x - 2y + 3z) \] ### Final Factorization Combining all these factors, we get the final factorization of the original expression: \[ (x + 2y - 3z)(x + 2y + 3z)(x - 2y - 3z)(x - 2y + 3z) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : (v) x^(2) - 2xy + y^(2) - z^(2)

Factorise : 16-9x^2

Factorise (x^(2) +y^(2) -z^(2))^(2) - 4x^(2) y^(2)

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise : 6x^(2) y + 9xy^(2) + 4y^(3)

Factorise : 16x^(2) - y^(2) + 4yz - 4z^(2)

Factorise : 4x^2 - 81 y^2

Factorise : (vi) x^(2) - y^(2) - 2yz - z^(2)

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)