Home
Class 9
MATHS
Factorise : (a+b)^(2) - a^(2) + b^(2)...

Factorise :
`(a+b)^(2) - a^(2) + b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a+b)^{2} - a^{2} + b^{2}\), we can follow these steps: ### Step 1: Expand \((a+b)^{2}\) Using the formula for the square of a binomial, we have: \[ (a+b)^{2} = a^{2} + 2ab + b^{2} \] So, we can rewrite the expression as: \[ a^{2} + 2ab + b^{2} - a^{2} + b^{2} \] ### Step 2: Combine like terms Now, we will combine the like terms in the expression: \[ a^{2} - a^{2} + 2ab + b^{2} + b^{2} = 0 + 2ab + 2b^{2} = 2ab + 2b^{2} \] ### Step 3: Factor out the common term In the expression \(2ab + 2b^{2}\), we can factor out \(2b\): \[ 2b(a + b) \] ### Final Answer Thus, the factorised form of the expression \((a+b)^{2} - a^{2} + b^{2}\) is: \[ 2b(a + b) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (a + 2b)^2 - a^2

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)

Factorise : 8a b^(2) + 12 a^(2)b

Factorise 98 ( a+b)^(2) - 2

Factorise : a^(2) - b^(2) - 2b -1

Factorise : a b^(2) - (a-1) b-1 .

Factorise : (5a - 2b)^2 - (2a - b)^2

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : (a^(2) + b^(2) - 4c^(2))^(2) -4a^(2)b^(2)

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)