Home
Class 9
MATHS
Factorise : a^(2) - b^(2) - (a+b)^(2)...

Factorise :
`a^(2) - b^(2) - (a+b)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 - b^2 - (a + b)^2 \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ a^2 - b^2 - (a + b)^2 \] ### Step 2: Expand \( (a + b)^2 \) Using the formula for the square of a binomial, we expand \( (a + b)^2 \): \[ (a + b)^2 = a^2 + 2ab + b^2 \] Substituting this back into the expression gives: \[ a^2 - b^2 - (a^2 + 2ab + b^2) \] ### Step 3: Simplify the expression Now, we simplify the expression: \[ a^2 - b^2 - a^2 - 2ab - b^2 \] The \( a^2 \) terms cancel out: \[ -b^2 - 2ab - b^2 = -2b^2 - 2ab \] ### Step 4: Factor out the common term Now we can factor out \(-2\) from the expression: \[ -2(b^2 + ab) \] ### Step 5: Factor further if possible We can factor \( b \) out of the remaining expression: \[ -2b(b + a) \] ### Final Result Thus, the factorised form of the expression \( a^2 - b^2 - (a + b)^2 \) is: \[ -2b(b + a) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 25a^(2) - 9b^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 4a^(2)b - 9b^(3)

Factorise: a^(2) - b^(2) - 4ac + 4c^(2)

Factorise : a^(2) - b^(2) - c^(2) +2bc

Factorise : (a^(2) + b^(2) - 4c^(2))^(2) -4a^(2)b^(2)

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : 25a^2 - 36b^2

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)

Factorise : a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd