Home
Class 9
MATHS
Factorise : 4x^(4) - x^(2) - 12x - 36...

Factorise :
`4x^(4) - x^(2) - 12x - 36`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 4x^4 - x^2 - 12x - 36 \), we will follow these steps: ### Step 1: Group the terms We start with the expression: \[ 4x^4 - x^2 - 12x - 36 \] We can rearrange it as: \[ 4x^4 - x^2 - (12x + 36) \] ### Step 2: Factor out common terms Next, we can factor out \( -1 \) from the last two terms: \[ 4x^4 - x^2 - 12(x + 3) \] ### Step 3: Rearrange and group Now, we can group the first two terms and the last two terms: \[ (4x^4 - x^2) - (12x + 36) \] ### Step 4: Factor out common factors From the first group \( 4x^4 - x^2 \), we can factor out \( x^2 \): \[ x^2(4x^2 - 1) - 12(x + 3) \] ### Step 5: Recognize the difference of squares Notice that \( 4x^2 - 1 \) can be factored as a difference of squares: \[ 4x^2 - 1 = (2x - 1)(2x + 1) \] Thus, we rewrite the expression: \[ x^2(2x - 1)(2x + 1) - 12(x + 3) \] ### Step 6: Factor by grouping Now we can factor by grouping: \[ x^2(2x - 1)(2x + 1) - 12(x + 3) = (2x - 1)(2x + 1)(x^2 - 12) \] ### Step 7: Factor the quadratic The term \( x^2 - 12 \) can be factored further: \[ x^2 - 12 = (x - 2\sqrt{3})(x + 2\sqrt{3}) \] ### Final Factorization Putting it all together, we have: \[ (2x - 1)(2x + 1)(x - 2\sqrt{3})(x + 2\sqrt{3}) \] ### Summary of the Factorization The complete factorization of \( 4x^4 - x^2 - 12x - 36 \) is: \[ (2x - 1)(2x + 1)(x - 2\sqrt{3})(x + 2\sqrt{3}) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(4) + x^(2) +1

Factorise : (v) x^4 - 5x^(2) - 36

Factorise: x^(4) + x^(2)+1

Factorise : 4x^2 - 81 y^2

Factorise 81 x ^(4) - 16y^(4)

Factorise : 7-12x - 4x^(2)

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : 2x^(3) + 54y^(3) - 4x - 12y

Factorise : 4x^(2) - 12ax - y^(2) - z^(2) - 2yz + 9a^(2)

Factorise : x^(2) + (1)/(4x^(2)) + 1 - 7x - (7)/(2x)