Home
Class 9
MATHS
Factorise : a^(2)(b+c) - (b+c)^(3)...

Factorise :
`a^(2)(b+c) - (b+c)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2(b+c) - (b+c)^3 \), we can follow these steps: ### Step 1: Identify the common factor Notice that both terms in the expression share a common factor of \( (b+c) \). We can factor this out from the expression. \[ a^2(b+c) - (b+c)^3 = (b+c)(a^2 - (b+c)^2) \] ### Step 2: Recognize the difference of squares The expression \( a^2 - (b+c)^2 \) is a difference of squares. We can use the identity \( x^2 - y^2 = (x+y)(x-y) \) where \( x = a \) and \( y = (b+c) \). \[ a^2 - (b+c)^2 = (a + (b+c))(a - (b+c)) \] ### Step 3: Substitute back into the expression Now we can substitute this back into our factored expression from Step 1: \[ (b+c)(a + (b+c))(a - (b+c)) \] ### Step 4: Simplify the expression We can rewrite the expression to make it clearer: \[ (b+c)(a + b + c)(a - b - c) \] ### Final Answer Thus, the fully factored form of the expression \( a^2(b+c) - (b+c)^3 \) is: \[ (b+c)(a + b + c)(a - b - c) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (B)|25 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : a(b-c) - d (c -b)

Factorise : a^(2)-81(b-c)^(2)

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : ab^2 - (a-c) b-c

Factorise a^(3)-(b-c)^(3) .

Factorise : a^(2) - b^(2) - c^(2) +2bc

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)