Home
Class 9
MATHS
Factorise : a^(3) -(27/a^(3))...

Factorise :
`a^(3) -(27/a^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^{3} - \frac{27}{a^{3}} \), we can follow these steps: ### Step 1: Rewrite the expression The given expression is: \[ a^{3} - \frac{27}{a^{3}} \] We can rewrite \( \frac{27}{a^{3}} \) as \( 27 \cdot a^{-3} \). Thus, the expression becomes: \[ a^{3} - 27 \cdot a^{-3} \] ### Step 2: Recognize the form of the expression Notice that \( a^{3} - 27 \) can be expressed as a difference of cubes. We can rewrite \( 27 \) as \( 3^{3} \): \[ a^{3} - 3^{3} \] ### Step 3: Apply the difference of cubes formula The difference of cubes formula states that: \[ x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) \] In our case, let \( x = a \) and \( y = 3 \). Applying the formula: \[ a^{3} - 3^{3} = (a - 3)(a^{2} + a \cdot 3 + 3^{2}) \] ### Step 4: Simplify the second factor Now, simplify the second factor: \[ a^{2} + 3a + 9 \] Thus, we have: \[ a^{3} - 27 = (a - 3)(a^{2} + 3a + 9) \] ### Step 5: Combine with the \( a^{-3} \) term Now, we need to combine this with the \( a^{-3} \) term we factored out earlier: \[ a^{3} - \frac{27}{a^{3}} = (a - 3)(a^{2} + 3a + 9) \cdot a^{-3} \] This can be rewritten as: \[ \frac{(a - 3)(a^{2} + 3a + 9)}{a^{3}} \] ### Final Factorised Form Thus, the final factorised form of the expression \( a^{3} - \frac{27}{a^{3}} \) is: \[ \frac{(a - 3)(a^{2} + 3a + 9)}{a^{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 1-8a^(3)

Factorise : 50a^(3) - 2a

Factorise : 8a^(3) - 27b^(3)

Factorise : 48x^(3) - 27x

Factorise : a^(6) - 7a^(3) - 8

Factorise : 2a^(3) - 50a

Factorise : 3a^(2) -1-2a

Factorise : a^(3) + 27b^(3)

Factorise : a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)

Factorise : a(3a - 2)-1