Home
Class 9
MATHS
Factorise : a^(3) + 0.064...

Factorise :
`a^(3) + 0.064`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 + 0.064 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ a^3 + 0.064 \] We can express \( 0.064 \) as a fraction: \[ 0.064 = \frac{64}{1000} \] ### Step 2: Recognize the cubes Next, we can identify \( 64 \) and \( 1000 \) as perfect cubes: \[ 64 = 4^3 \quad \text{and} \quad 1000 = 10^3 \] Thus, we can rewrite \( 0.064 \) as: \[ 0.064 = \left(\frac{4}{10}\right)^3 \] ### Step 3: Apply the sum of cubes formula Now we can rewrite the expression as: \[ a^3 + \left(\frac{4}{10}\right)^3 \] This fits the sum of cubes formula, which states: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] Here, let \( x = a \) and \( y = \frac{4}{10} \). ### Step 4: Factor using the formula Applying the formula: \[ a^3 + \left(\frac{4}{10}\right)^3 = \left(a + \frac{4}{10}\right)\left(a^2 - a \cdot \frac{4}{10} + \left(\frac{4}{10}\right)^2\right) \] ### Step 5: Simplify the expression Now we simplify the second factor: 1. Calculate \( \left(\frac{4}{10}\right)^2 = \frac{16}{100} = 0.16 \) 2. The second factor becomes: \[ a^2 - a \cdot \frac{4}{10} + 0.16 = a^2 - 0.4a + 0.16 \] ### Final Result Thus, the factorization of \( a^3 + 0.064 \) is: \[ \left(a + 0.4\right)\left(a^2 - 0.4a + 0.16\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) - 27

Factorise : 1-8a^(3)

Factorise : 2a^(3) - 50a

Factorise : 50a^(3) - 2a

Factorise : a(3a - 2)-1

Factorise : a^(2) - 3a - 40

Factorise : a^(2) - 3a - 40

Factorise : a^3 - a^2 + a

Factorise : 48x^(3) - 27x

Factorise : a-b - a^(3) + b^(3)