Home
Class 9
MATHS
Factorise : a^(4) - 343 a...

Factorise :
`a^(4) - 343 a`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^4 - 343a \), we can follow these steps: ### Step 1: Factor out the common term The first step is to identify and factor out the common term from the expression. In this case, both terms in the expression \( a^4 \) and \( -343a \) have a common factor of \( a \). \[ a^4 - 343a = a(a^3 - 343) \] ### Step 2: Recognize the difference of cubes Next, we notice that \( 343 \) can be expressed as \( 7^3 \). Therefore, we can rewrite the expression inside the parentheses as a difference of cubes: \[ a^3 - 7^3 \] ### Step 3: Apply the difference of cubes formula The difference of cubes can be factored using the formula: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] In our case, \( x = a \) and \( y = 7 \). So we apply the formula: \[ a^3 - 7^3 = (a - 7)(a^2 + 7a + 49) \] ### Step 4: Combine the factors Now we can combine all the factors we have found: \[ a(a^3 - 7^3) = a(a - 7)(a^2 + 7a + 49) \] ### Final Answer Thus, the completely factored form of the expression \( a^4 - 343a \) is: \[ \boxed{a(a - 7)(a^2 + 7a + 49)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(4) -1

Factorise : 16a^(4) + 54a

Factorise : 16a^(4) - b^(4) .

Factorise : 4a^2 - 8ab

Factorise : 3-a(4+7a)

Factorise : a^(4) - 7a^(2) + 1

Factorise : (a^(2) - a)(4a^(2) -4a - 5) - 6

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)

Factorise : 8a^(3) - b^(3) - 4ax + 2bx

Factorise : (iv) a^4 - 625