Home
Class 9
MATHS
Factorise : (x-y)^(3) - 8x^(3)...

Factorise :
`(x-y)^(3) - 8x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((x - y)^3 - 8x^3\), we can follow these steps: ### Step 1: Recognize the difference of cubes The expression is in the form of \(a^3 - b^3\), where: - \(a = (x - y)\) - \(b = (2x)\) ### Step 2: Apply the difference of cubes formula The difference of cubes can be factored using the formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Substituting \(a\) and \(b\): \[ (x - y)^3 - (2x)^3 = ((x - y) - 2x)((x - y)^2 + (x - y)(2x) + (2x)^2) \] ### Step 3: Simplify \(a - b\) Calculate \(a - b\): \[ (x - y) - 2x = -y - x = -(x + y) \] ### Step 4: Expand \(a^2 + ab + b^2\) Now, we need to calculate \(a^2 + ab + b^2\): 1. Calculate \(a^2\): \[ (x - y)^2 = x^2 - 2xy + y^2 \] 2. Calculate \(ab\): \[ (x - y)(2x) = 2x(x - y) = 2x^2 - 2xy \] 3. Calculate \(b^2\): \[ (2x)^2 = 4x^2 \] Now combine these results: \[ a^2 + ab + b^2 = (x^2 - 2xy + y^2) + (2x^2 - 2xy) + 4x^2 \] Combine like terms: \[ = x^2 + 2x^2 + 4x^2 - 2xy - 2xy + y^2 = 7x^2 - 4xy + y^2 \] ### Step 5: Write the final factorization Putting it all together, we have: \[ (x - y)^3 - 8x^3 = -(x + y)(7x^2 - 4xy + y^2) \] ### Final Answer: The factorised form of \((x - y)^3 - 8x^3\) is: \[ -(x + y)(7x^2 - 4xy + y^2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (i) 6x^(3) - 8x^(2)

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 16 x^(2) - 8x - 3

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : 48x^(3) - 27x

Factorise : 4(x+y)^(2) - 3(x+y)

Factorise : x^(2) - (8)/(x)

Factorise: 4(2x-3y)^(2) - 8x + 12y -3

Factorise : 15x^(4) y^(3) - 20x^(3) y

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10