Home
Class 9
MATHS
Factorise : a^(6) - b^(6)...

Factorise :
`a^(6) - b^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize \( a^6 - b^6 \), we can follow these steps: ### Step 1: Recognize the difference of squares The expression \( a^6 - b^6 \) can be recognized as a difference of squares: \[ a^6 - b^6 = (a^3)^2 - (b^3)^2 \] ### Step 2: Apply the difference of squares formula Using the difference of squares formula \( x^2 - y^2 = (x - y)(x + y) \), we can factor the expression: \[ a^6 - b^6 = (a^3 - b^3)(a^3 + b^3) \] ### Step 3: Factor \( a^3 - b^3 \) and \( a^3 + b^3 \) Now, we need to factor \( a^3 - b^3 \) and \( a^3 + b^3 \) using their respective formulas: - The formula for \( a^3 - b^3 \) is: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] - The formula for \( a^3 + b^3 \) is: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] ### Step 4: Combine all factors Substituting these back into our expression, we have: \[ a^6 - b^6 = (a^3 - b^3)(a^3 + b^3) = (a - b)(a^2 + ab + b^2)(a + b)(a^2 - ab + b^2) \] ### Final Factorized Form Thus, the complete factorization of \( a^6 - b^6 \) is: \[ a^6 - b^6 = (a - b)(a + b)(a^2 + ab + b^2)(a^2 - ab + b^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(6) + 27b^(3)

Factorise : a^(6) - 26a^(3) - 27

Factorise : a^(6) - 7a^(3) - 8

Factorise : a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 4a^(2)b - 9b^(3)

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : 17a^(6) b^(8) - 34 a^(4) b^(6) + 51 a^(2) b^(4)

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorise : a^(3) + b^(3) + a + b .