Home
Class 9
MATHS
Factorise : a^(3) - 27b^(3) + 2a^(2)b ...

Factorise :
`a^(3) - 27b^(3) + 2a^(2)b - 6ab^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^3 - 27b^3 + 2a^2b - 6ab^2 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ a^3 - 27b^3 + 2a^2b - 6ab^2 \] Notice that \( 27b^3 \) can be rewritten as \( (3b)^3 \). Thus, we can express the equation as: \[ a^3 - (3b)^3 + 2a^2b - 6ab^2 \] ### Step 2: Group the terms Now, we can group the terms: \[ a^3 - (3b)^3 + 2ab(a - 3b) \] Here, we factor \( 2ab \) from the last two terms \( 2a^2b - 6ab^2 \). ### Step 3: Recognize the difference of cubes We recognize that \( a^3 - (3b)^3 \) is a difference of cubes. The formula for the difference of cubes is: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] Applying this to our expression, we have: \[ x = a \quad \text{and} \quad y = 3b \] Thus, we can write: \[ a^3 - (3b)^3 = (a - 3b)(a^2 + a(3b) + (3b)^2) = (a - 3b)(a^2 + 3ab + 9b^2) \] ### Step 4: Combine the factored terms Now, substituting back into our expression: \[ (a - 3b)(a^2 + 3ab + 9b^2) + 2ab(a - 3b) \] We can factor out \( (a - 3b) \): \[ (a - 3b)(a^2 + 3ab + 9b^2 + 2ab) \] ### Step 5: Simplify the expression inside the parentheses Now, we simplify the expression inside the parentheses: \[ a^2 + 3ab + 2ab + 9b^2 = a^2 + 5ab + 9b^2 \] ### Final Factorization Thus, the final factorization of the expression is: \[ \boxed{(a - 3b)(a^2 + 5ab + 9b^2)} \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 8a^(3) - 27b^(3)

Factorise : a^(6) + 27b^(3)

Factorise : a- 3b +a^(3) - 27b^(3)

Factorise : 4a^(2)b - 9b^(3)

Factorise : a^(6) - 26a^(3) - 27

Factorise : 8a^(3) - b^(3) - 4ax + 2bx

Factorise : a+2 b + a^(3) + 8b^(3)

Factorise : (ii) 35a^(3) b^(2) c + 42 ab^(2) c^(2)

Factorise: a^(3) + ab (1-2a) - 2b^(2)

Factorise : a^(3) b - a^(2) b^(2) - b^(3)