Home
Class 9
MATHS
Factorise : 8a^(3) - b^(3) - 4ax + 2bx...

Factorise :
`8a^(3) - b^(3) - 4ax + 2bx`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(8a^3 - b^3 - 4ax + 2bx\), we can follow these steps: ### Step 1: Identify the terms The expression is \(8a^3 - b^3 - 4ax + 2bx\). We can group the terms in a way that allows us to use the difference of cubes and factor out common factors. ### Step 2: Rearrange the expression Rearranging the expression gives us: \[ 8a^3 - b^3 + (-4ax + 2bx) \] This can be written as: \[ 8a^3 - b^3 - 4ax + 2bx \] ### Step 3: Factor the difference of cubes We can use the identity for the difference of cubes: \[ c^3 - d^3 = (c - d)(c^2 + d^2 + cd) \] Here, let \(c = 2a\) and \(d = b\). Then, we have: \[ 8a^3 - b^3 = (2a)^3 - b^3 \] Applying the identity: \[ = (2a - b)( (2a)^2 + b^2 + 2ab) \] Calculating \( (2a)^2 + b^2 + 2ab \): \[ = 4a^2 + b^2 + 2ab \] So we have: \[ 8a^3 - b^3 = (2a - b)(4a^2 + b^2 + 2ab) \] ### Step 4: Factor out common terms from the remaining expression Now, we look at the remaining terms \(-4ax + 2bx\): \[ -4ax + 2bx = -2x(2a - b) \] ### Step 5: Combine the factors Now we can combine our results: \[ 8a^3 - b^3 - 4ax + 2bx = (2a - b)(4a^2 + b^2 + 2ab) - 2x(2a - b) \] Factoring out the common term \((2a - b)\): \[ = (2a - b)(4a^2 + b^2 + 2ab - 2x) \] ### Final Factorised Form Thus, the factorised form of the expression \(8a^3 - b^3 - 4ax + 2bx\) is: \[ (2a - b)(4a^2 + b^2 + 2ab - 2x) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 8a^(3) - 27b^(3)

Factorise : 1-8a^(3)

Factorise : 4a^(2)b - 9b^(3)

Factorise : a-b - a^(3) + b^(3)

Factorise : a^(3) + b^(3) + a + b .

Factorise : (a+b)^(3) -a-b

Factorise : a- 3b +a^(3) - 27b^(3)

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : a+2 b + a^(3) + 8b^(3)

Factorise 32a^(4) - 8a^(2)