Home
Class 9
MATHS
Factorise : a-b - a^(3) + b^(3)...

Factorise :
`a-b - a^(3) + b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a - b - a^3 + b^3 \), we can follow these steps: ### Step 1: Rearrange the expression We start with the expression: \[ a - b - a^3 + b^3 \] We can rearrange it as: \[ a - b + b^3 - a^3 \] ### Step 2: Group the terms Next, we can group the terms: \[ (a - b) + (b^3 - a^3) \] ### Step 3: Factor the difference of cubes We know that \( b^3 - a^3 \) can be factored using the difference of cubes formula: \[ b^3 - a^3 = (b - a)(b^2 + ba + a^2) \] Since \( b - a = -(a - b) \), we can rewrite it as: \[ b^3 - a^3 = -(a - b)(b^2 + ba + a^2) \] ### Step 4: Substitute back into the expression Now we substitute this back into our grouped expression: \[ (a - b) - (a - b)(b^2 + ba + a^2) \] ### Step 5: Factor out \( a - b \) We can factor out \( (a - b) \): \[ (a - b)(1 - (b^2 + ba + a^2)) \] ### Step 6: Simplify the expression This simplifies to: \[ (a - b)(1 - b^2 - ab - a^2) \] ### Final Answer Thus, the factorised form of the expression \( a - b - a^3 + b^3 \) is: \[ (a - b)(1 - b^2 - ab - a^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a- 3b +a^(3) - 27b^(3)

Factorise : a+2 b + a^(3) + 8b^(3)

Factorise : a-b-4a^(2) + 4b^(2)

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : a^(6) - b^(6)

Factorise : 1029 - 3x^(3)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 64 - a^(3)b^(3)

Factorise : 6 + 7b - 3b^(2)

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)