Home
Class 9
MATHS
Factorise : 1029 - 3x^(3)...

Factorise :
`1029 - 3x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 1029 - 3x^3 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression as it is: \[ 1029 - 3x^3 \] ### Step 2: Factor out the common factor We notice that \( 1029 \) can be factored as \( 3 \times 343 \) (since \( 343 = 7^3 \)). Thus, we can rewrite the expression: \[ 1029 - 3x^3 = 3 \times 343 - 3x^3 \] Factoring out \( 3 \): \[ = 3(343 - x^3) \] ### Step 3: Recognize the difference of cubes Now, we recognize that \( 343 \) is \( 7^3 \), so we can rewrite the expression inside the parentheses: \[ 343 - x^3 = 7^3 - x^3 \] This is a difference of cubes, which can be factored using the identity: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] where \( a = 7 \) and \( b = x \). ### Step 4: Apply the difference of cubes formula Applying the formula: \[ 7^3 - x^3 = (7 - x)(7^2 + 7x + x^2) \] Calculating \( 7^2 \): \[ 7^2 = 49 \] Thus, we have: \[ 7^3 - x^3 = (7 - x)(49 + 7x + x^2) \] ### Step 5: Combine everything Now, substituting back into our factored expression: \[ 3(343 - x^3) = 3((7 - x)(49 + 7x + x^2)) \] This simplifies to: \[ = 3(7 - x)(49 + 7x + x^2) \] ### Final Answer The final factorised form of the expression \( 1029 - 3x^3 \) is: \[ 3(7 - x)(49 + 7x + x^2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (C)|30 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorize: 1029-3x^3

Factorise : 6 + 11x + 3x^(2)

Factorise : 10x^2 - 18x^3 + 14x^4

Factorise : 64 - a^(3)b^(3)

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 3x^2 + 6x^3

Factorise : x^2 + 4x +3

Factorise : 1-8a^(3)

Factorise : x^(2) - (a - 3) x -3a