Home
Class 9
MATHS
Factorise : 9a^(2) + (1)/(9a^(2)) - 2-...

Factorise :
`9a^(2) + (1)/(9a^(2)) - 2-12a + (4)/(3a)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 9a^2 + \frac{1}{9a^2} - 2 - 12a + \frac{4}{3a} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 9a^2 + \frac{1}{9a^2} - 2 - 12a + \frac{4}{3a} \] We can rewrite \( 9a^2 \) as \( (3a)^2 \) and \( \frac{1}{9a^2} \) as \( \left(\frac{1}{3a}\right)^2 \): \[ (3a)^2 + \left(\frac{1}{3a}\right)^2 - 2 - 12a + \frac{4}{3a} \] ### Step 2: Combine the terms Next, we can combine the terms involving \( 3a \) and \( \frac{1}{3a} \): \[ (3a)^2 - 12a + \left(\frac{1}{3a}\right)^2 + \frac{4}{3a} - 2 \] ### Step 3: Group the terms Now, we can group the terms: \[ (3a)^2 - 12a + \left(\frac{1}{3a}\right)^2 + \frac{4}{3a} - 2 \] Notice that \( (3a)^2 - 12a \) can be factored as: \[ (3a - 6)^2 \] And we can rewrite \( \left(\frac{1}{3a}\right)^2 + \frac{4}{3a} - 2 \). ### Step 4: Factor the quadratic We can now treat the expression as a quadratic in terms of \( 3a \) and \( \frac{1}{3a} \): \[ (3a - 2)^2 - 4 \] This can be factored using the difference of squares: \[ (3a - 2 - 2)(3a - 2 + 2) = (3a - 4)(3a) \] ### Step 5: Final factorization Thus, the final factorization is: \[ (3a - 4)(3a + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 16-9x^2

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 9(a-2)^(2) - 16(a+2)^(2)

Factorise : 25a^(2) - 9b^(2)

Factorise : (iv) 9x^(2) - (1)/( 16)

Factorise : (iii) 9x^(2) - (1)/( 16)

Factorise : 3a^(2) b - 12 a^(2) - 9b + 36

Factorise : 9(x-y)^(2) - (x+2y)^(2)

Factorise : x^(2) + 6x + 9 - 4y^(2)