Home
Class 9
MATHS
Factorise : 4x^(4) + 9y^(4) + 11x^(2)y...

Factorise :
`4x^(4) + 9y^(4) + 11x^(2)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(4x^4 + 9y^4 + 11x^2y^2\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 4x^4 + 9y^4 + 11x^2y^2 \] ### Step 2: Recognize squares Notice that \(4x^4\) can be rewritten as \((2x^2)^2\) and \(9y^4\) can be rewritten as \((3y^2)^2\). Thus, we can rewrite the expression as: \[ (2x^2)^2 + (3y^2)^2 + 11x^2y^2 \] ### Step 3: Rearranging the terms Next, we can rearrange the terms in a way that helps us factor: \[ (2x^2)^2 + (3y^2)^2 + 2(2x^2)(3y^2) - x^2y^2 \] Here, we have added and subtracted \(x^2y^2\) to maintain equality. ### Step 4: Grouping the terms Now, we can group the first three terms: \[ (2x^2 + 3y^2)^2 - (xy)^2 \] ### Step 5: Apply the difference of squares Now we can apply the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). Here, let \(a = (2x^2 + 3y^2)\) and \(b = xy\): \[ (2x^2 + 3y^2 + xy)(2x^2 + 3y^2 - xy) \] ### Final Result Thus, the factorised form of the expression \(4x^4 + 9y^4 + 11x^2y^2\) is: \[ (2x^2 + 3y^2 + xy)(2x^2 + 3y^2 - xy) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise 81 x ^(4) - 16y^(4)

Factorise: x^(4) + y^(4) - 27x^(2)y^(2)

Factorise : 4x^2 - 81 y^2

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : 6x^(2) y + 9xy^(2) + 4y^(3)

Factorise : 15x^(4) y^(3) - 20x^(3) y

Factorise : x^(2) + 5xy + 4y^(2)

Factorise : x^(4) + x^(2)y^(2) + y^(4)