Home
Class 9
MATHS
Factorise : x^(2) + (1)/(x^(2)) - 3...

Factorise :
`x^(2) + (1)/(x^(2)) - 3`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + \frac{1}{x^2} - 3 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^2 + \frac{1}{x^2} - 3 \] We can rewrite \(-3\) as \(-2 - 1\) to help with the factorisation: \[ x^2 + \frac{1}{x^2} - 2 - 1 \] ### Step 2: Recognize the structure Notice that \( x^2 + \frac{1}{x^2} - 2 \) can be expressed in a different form. We can express \( x^2 + \frac{1}{x^2} \) as: \[ \left(x - \frac{1}{x}\right)^2 \] This is because: \[ \left(x - \frac{1}{x}\right)^2 = x^2 - 2\cdot x\cdot\frac{1}{x} + \frac{1}{x^2} = x^2 - 2 + \frac{1}{x^2} \] ### Step 3: Substitute back Now we can substitute back into our expression: \[ \left(x - \frac{1}{x}\right)^2 - 1 \] ### Step 4: Apply the difference of squares We can now use the difference of squares formula \( a^2 - b^2 = (a - b)(a + b) \): Let \( a = \left(x - \frac{1}{x}\right) \) and \( b = 1 \): \[ \left(x - \frac{1}{x} - 1\right)\left(x - \frac{1}{x} + 1\right) \] ### Step 5: Simplify the factors Now we simplify each factor: 1. \( x - \frac{1}{x} - 1 = x - 1 - \frac{1}{x} \) 2. \( x - \frac{1}{x} + 1 = x + 1 - \frac{1}{x} \) Thus, the factorised form is: \[ \left(x - 1 - \frac{1}{x}\right)\left(x + 1 - \frac{1}{x}\right) \] ### Final Answer The final factorised form of the expression \( x^2 + \frac{1}{x^2} - 3 \) is: \[ \left(x - 1 - \frac{1}{x}\right)\left(x + 1 - \frac{1}{x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : x^(2) - 25

Factorise : x^(2) - (8)/(x)

Factorise : x^(2) + (1)/(4x^(2)) + 1 - 7x - (7)/(2x)

Factorise x^(2) + (1)/(x^(2)) + 2- 5x -( 5)/(x)

Factorise : x^(2) - 5x -6

Factorise : x^2 + 4x +3

Factorise : x^(2) - x - 72

Factorise : x^(2) + 5x + 6