Home
Class 9
MATHS
Factorise : a-b-4a^(2) + 4b^(2)...

Factorise :
`a-b-4a^(2) + 4b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a - b - 4a^2 + 4b^2 \), we will follow these steps: ### Step 1: Rearrange the terms Rearranging the terms of the expression gives us: \[ -4a^2 + 4b^2 + a - b \] ### Step 2: Factor out common terms We can factor out a negative sign from the first two terms: \[ -4(a^2 - b^2) + a - b \] ### Step 3: Recognize the difference of squares The expression \( a^2 - b^2 \) is a difference of squares, which can be factored using the formula \( a^2 - b^2 = (a + b)(a - b) \): \[ -4((a + b)(a - b)) + a - b \] ### Step 4: Combine like terms Now we can rewrite the expression: \[ (a - b) - 4(a + b)(a - b) \] ### Step 5: Factor out the common factor \( (a - b) \) Now we can factor out \( (a - b) \) from the entire expression: \[ (a - b)(1 - 4(a + b)) \] ### Final Answer Thus, the factorised form of the expression \( a - b - 4a^2 + 4b^2 \) is: \[ (a - b)(1 - 4(a + b)) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) + 4a + 4 -b^(2)

Factorise : 4a^(2) - (4b^(2) + 4bc + c^(2))

Factorise : 4a^(2) - 49b^(2) + 2a - 7b

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : 8a b^(2) + 12 a^(2)b

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)