Home
Class 9
MATHS
Factorise : (a^(2) - 3a)(a^(2) - 3a + ...

Factorise :
`(a^(2) - 3a)(a^(2) - 3a + 7) + 10`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a^2 - 3a)(a^2 - 3a + 7) + 10\), we can follow these steps: ### Step 1: Substitute Let \( t = a^2 - 3a \). Then the expression becomes: \[ t(t + 7) + 10 \] ### Step 2: Expand the Expression Now, expand the expression: \[ t(t + 7) + 10 = t^2 + 7t + 10 \] ### Step 3: Factor the Quadratic Next, we need to factor the quadratic \( t^2 + 7t + 10 \). We look for two numbers that multiply to \( 10 \) (the constant term) and add to \( 7 \) (the coefficient of \( t \)). The numbers \( 5 \) and \( 2 \) satisfy this condition: \[ t^2 + 7t + 10 = (t + 5)(t + 2) \] ### Step 4: Substitute Back Now, substitute back \( t = a^2 - 3a \): \[ (a^2 - 3a + 5)(a^2 - 3a + 2) \] ### Step 5: Final Expression Thus, the factorised form of the original expression is: \[ (a^2 - 3a + 5)(a^2 - 3a + 2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) - 3a - 40

Factorise : a^(2) - 3a - 40

Factorise : 2a^(7) - 128a

Factorise : 3a^(2) -1-2a

Factorise : 50a^(3) - 2a

Factorise : 2a^(3) - 50a

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : x^(2) - 3ax - 88a^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 3a^(2) - 5a + 2