Home
Class 9
MATHS
Factorise : (a^(2) - a)(4a^(2) -4a - 5...

Factorise :
`(a^(2) - a)(4a^(2) -4a - 5) - 6`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \((a^{2} - a)(4a^{2} - 4a - 5) - 6\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (a^{2} - a)(4a^{2} - 4a - 5) - 6 \] ### Step 2: Factor out common terms Notice that we can factor out \(a\) from \(a^{2} - a\): \[ a(a - 1)(4a^{2} - 4a - 5) - 6 \] ### Step 3: Simplify the second part Now, we need to simplify the expression \(4a^{2} - 4a - 5 - 6\): \[ 4a^{2} - 4a - 11 \] ### Step 4: Substitute \(t\) Let \(t = a^{2} - a\). Then we rewrite the expression: \[ t(4t - 11) \] ### Step 5: Expand and rearrange Now, we expand this: \[ 4t^{2} - 11t \] ### Step 6: Factor the quadratic To factor \(4t^{2} - 11t\), we look for two numbers that multiply to \(4 \times -11 = -44\) and add to \(-11\). The numbers are \(-4\) and \(+1\). ### Step 7: Rewrite the quadratic We can rewrite the quadratic as: \[ 4t^{2} - 4t + t - 11 \] ### Step 8: Group the terms Now, we group the terms: \[ (4t^{2} - 4t) + (t - 11) \] ### Step 9: Factor by grouping Factoring out common terms in each group gives us: \[ 4t(t - 1) + 1(t - 11) \] ### Step 10: Factor out the common binomial Now, we can factor out the common binomial \((t - 11)\): \[ (t - 11)(4t + 1) \] ### Step 11: Substitute back for \(t\) We substitute back \(t = a^{2} - a\): \[ (a^{2} - a - 11)(4(a^{2} - a) + 1) \] ### Step 12: Final factorization Thus, the final factorization is: \[ (a^{2} - a - 11)(4a^{2} - 4a + 1) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : a^2 - 5a + 6

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : 6a^(2) - a - 15

Factorise : 4a^2 - 8ab

Factorise : a^(2) + 4a + 4 -b^(2)

Factorise : 4a^(2) - 49b^(2) + 2a - 7b

Factorise : x^(2) - 5x -6

Factorise : a^2 + 5a + 6

Factorise : a^2 + 5a - 6