Home
Class 9
MATHS
Factorise : 5a^(2) - b^(2) - 4ab + 7a ...

Factorise :
`5a^(2) - b^(2) - 4ab + 7a - 7b`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(5a^2 - b^2 - 4ab + 7a - 7b\), we will follow these steps: ### Step 1: Rearrange and Group Terms We start with the expression: \[ 5a^2 - b^2 - 4ab + 7a - 7b \] We can rearrange it to group similar terms: \[ (5a^2 - 4ab - b^2) + (7a - 7b) \] ### Step 2: Factor the First Group Now, let's focus on the first group \(5a^2 - 4ab - b^2\). We can rewrite \(5a^2\) as \(4a^2 + a^2\): \[ (4a^2 + a^2 - 4ab - b^2) \] Now, we can group \(4a^2 - 4ab\) and \(a^2 - b^2\): \[ 4a(a - b) + (a^2 - b^2) \] ### Step 3: Apply the Difference of Squares The expression \(a^2 - b^2\) can be factored using the difference of squares: \[ a^2 - b^2 = (a + b)(a - b) \] Thus, we have: \[ 4a(a - b) + (a + b)(a - b) \] ### Step 4: Factor out the Common Term Now we can factor out the common term \((a - b)\): \[ (a - b)(4a + (a + b)) \] This simplifies to: \[ (a - b)(5a + b) \] ### Step 5: Factor the Remaining Terms We still have the second group \(7a - 7b\): \[ 7(a - b) \] Now we can combine everything: \[ (a - b)(5a + b) + 7(a - b) \] ### Step 6: Final Factorization We can factor out \((a - b)\) from the entire expression: \[ (a - b)((5a + b) + 7) \] This simplifies to: \[ (a - b)(5a + b + 7) \] ### Final Answer Thus, the factorized form of the expression \(5a^2 - b^2 - 4ab + 7a - 7b\) is: \[ \boxed{(a - b)(5a + b + 7)} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 4a^(2) - 49b^(2) + 2a - 7b

Factorise : a^(4) - 7a^(2) + 1

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : a^(2)b^(2) + 8ab - 9

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : 7b^(2) - 8b +1

Factorise : a-b-4a^(2) + 4b^(2)

Factorise (1-a^(2))(1-b^(2)) + 4ab

Factorise : 2a^(7) - 128a

Factorise : 6 + 7b - 3b^(2)