Home
Class 9
MATHS
Factorise : 12(3x - 2y)^(2) - (3x - 2y...

Factorise :
`12(3x - 2y)^(2) - (3x - 2y)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 12(3x - 2y)^2 - (3x - 2y) - 1 \), we can follow these steps: ### Step 1: Substitute Let \( z = 3x - 2y \). This substitution simplifies our expression. So, we rewrite the original expression as: \[ 12z^2 - z - 1 \] ### Step 2: Factor the Quadratic Now we need to factor the quadratic \( 12z^2 - z - 1 \). We will use the method of splitting the middle term. We need to find two numbers that multiply to \( 12 \times (-1) = -12 \) and add to \(-1\). The numbers that satisfy this are \(-4\) and \(3\). ### Step 3: Rewrite the Middle Term We can rewrite \(-z\) as \(-4z + 3z\): \[ 12z^2 - 4z + 3z - 1 \] ### Step 4: Group the Terms Now, we group the terms: \[ (12z^2 - 4z) + (3z - 1) \] ### Step 5: Factor by Grouping Now we factor out the common factors from each group: \[ 4z(3z - 1) + 1(3z - 1) \] ### Step 6: Factor Out the Common Binomial Now we can factor out the common binomial \((3z - 1)\): \[ (3z - 1)(4z + 1) \] ### Step 7: Substitute Back Now we substitute back \( z = 3x - 2y \): \[ (3(3x - 2y) - 1)(4(3x - 2y) + 1) \] ### Step 8: Simplify Now we simplify each factor: 1. For \( 3(3x - 2y) - 1 \): \[ 9x - 6y - 1 \] 2. For \( 4(3x - 2y) + 1 \): \[ 12x - 8y + 1 \] ### Final Result Thus, the factorised form of the expression is: \[ (9x - 6y - 1)(12x - 8y + 1) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10

Factorise : (viii) (3x - 2y)^(2) - 5 (3x -2y) - 24

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : (x-2y)^(2) - 12(x-2y) + 32

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise 8( 3x - 2y ) ^(2) - 6x + 4y -1

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : 2x^(3) + 54y^(3) - 4x - 12y

Factorise : 9(x-y)^(2) - (x+2y)^(2)

Factorise : 49 (x-y)^2 - 9 (2x +y)^2