Home
Class 9
MATHS
Factorise : (1)/(4)(a+b)^(2) - (9)/(16...

Factorise :
`(1)/(4)(a+b)^(2) - (9)/(16)(2a - b)^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(\frac{1}{4}(a+b)^{2} - \frac{9}{16}(2a - b)^{2}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1}{4}(a+b)^{2} - \frac{9}{16}(2a - b)^{2} \] We can rewrite \(\frac{1}{4}\) as \(\left(\frac{1}{2}\right)^{2}\) and \(\frac{9}{16}\) as \(\left(\frac{3}{4}\right)^{2}\). Thus, we have: \[ \left(\frac{a+b}{2}\right)^{2} - \left(\frac{3(2a - b)}{4}\right)^{2} \] ### Step 2: Apply the difference of squares formula We can now apply the difference of squares formula, which states that \(x^{2} - y^{2} = (x+y)(x-y)\). Here, let: \[ x = \frac{a+b}{2} \quad \text{and} \quad y = \frac{3(2a - b)}{4} \] So, we can write: \[ \left(\frac{a+b}{2} + \frac{3(2a - b)}{4}\right)\left(\frac{a+b}{2} - \frac{3(2a - b)}{4}\right) \] ### Step 3: Simplify the first factor Now we simplify the first factor: \[ \frac{a+b}{2} + \frac{3(2a - b)}{4} \] To add these fractions, we need a common denominator, which is 4: \[ = \frac{2(a+b)}{4} + \frac{3(2a - b)}{4} = \frac{2a + 2b + 6a - 3b}{4} = \frac{8a - b}{4} \] ### Step 4: Simplify the second factor Now we simplify the second factor: \[ \frac{a+b}{2} - \frac{3(2a - b)}{4} \] Again, using a common denominator of 4: \[ = \frac{2(a+b)}{4} - \frac{3(2a - b)}{4} = \frac{2a + 2b - 6a + 3b}{4} = \frac{-4a + 5b}{4} \] ### Step 5: Combine the factors Now we can combine the factors: \[ \frac{(8a - b)(-4a + 5b)}{16} \] ### Final Answer Thus, the factorised form of the expression is: \[ \frac{(8a - b)(-4a + 5b)}{16} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Exercise 5 (D)|20 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : (4)/( 25) - 25b^2

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (i) 1-4 (a-2b)^2

Factorise : a^(2) - b^(2) - 2b -1

Factorise : 25(2a - b)^(2) - 81 b^(2)

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : 16a^(4) - b^(4) .

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : 16-9x^2

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)