Home
Class 9
MATHS
The minute hand of a clock is 8 cm long...

The minute hand of a clock is 8 cm long. Find the area swept by the minute hand between 8.30 a.m. and 9.05 a.m.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area swept by the minute hand of a clock between 8:30 a.m. and 9:05 a.m., we can follow these steps: ### Step 1: Determine the length of the minute hand The length of the minute hand is given as 8 cm. ### Step 2: Calculate the time difference The time difference between 8:30 a.m. and 9:05 a.m. is: \[ 9:05 - 8:30 = 35 \text{ minutes} \] ### Step 3: Find the angle swept by the minute hand The minute hand sweeps 360 degrees in 60 minutes. Therefore, the angle swept per minute is: \[ \text{Angle per minute} = \frac{360 \text{ degrees}}{60 \text{ minutes}} = 6 \text{ degrees/minute} \] Now, for 35 minutes, the total angle swept (θ) is: \[ \theta = 6 \text{ degrees/minute} \times 35 \text{ minutes} = 210 \text{ degrees} \] ### Step 4: Use the formula for the area of a sector The area (A) of a sector of a circle can be calculated using the formula: \[ A = \frac{\pi r^2 \theta}{360} \] Where: - \( r \) is the radius (length of the minute hand), - \( \theta \) is the angle in degrees. Substituting the values: - \( r = 8 \text{ cm} \) - \( \theta = 210 \text{ degrees} \) ### Step 5: Substitute the values into the formula \[ A = \frac{\pi \times (8)^2 \times 210}{360} \] \[ = \frac{\pi \times 64 \times 210}{360} \] ### Step 6: Simplify the expression First, we can simplify \( \frac{210}{360} \): \[ \frac{210}{360} = \frac{7}{12} \] Now substituting back: \[ A = \pi \times 64 \times \frac{7}{12} \] \[ = \frac{64 \times 7 \pi}{12} \] \[ = \frac{448 \pi}{12} \] \[ = \frac{112 \pi}{3} \] ### Step 7: Substitute the value of π (approximately 3.14) Using \( \pi \approx \frac{22}{7} \): \[ A = \frac{112 \times \frac{22}{7}}{3} \] \[ = \frac{2464}{21} \] Calculating this gives approximately: \[ A \approx 117.33 \text{ cm}^2 \] ### Final Answer The area swept by the minute hand between 8:30 a.m. and 9:05 a.m. is approximately: \[ \frac{448}{21} \text{ cm}^2 \text{ or } 117.33 \text{ cm}^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • AREA AND PERIMETER OF PLANE FIGURES

    ICSE|Exercise EXERCISE 20(D)|12 Videos
  • AREA AND PERIMETER OF PLANE FIGURES

    ICSE|Exercise EXERCISE 20(B)|46 Videos
  • AREA THEOREMS

    ICSE|Exercise Exercies 16(C )|22 Videos

Similar Questions

Explore conceptually related problems

The minute hand of a clock is 8 cm long. Find the area swept by the minute hand between 8: 30 am and 9:05 am.

The length of the minute hand of a clock is 10.5 cm. Find the area swept by the minute hand between 10 : 30 p.m. and 10 : 40 p.m.

The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.

The length of the minute hand of a clock is 5cm. Find the area swept by the miute hand during the time period 6 : 05 am and 6: 40 am.

The length of the minute hand of a clock is 14cm. Find the area swept by the minute hand in 5 minutes.

The length of the minute hand of a clock is 14cm. Find the area swept by the minute hand in 5 minutes.

The minute hand of a clock is sqrt(21) cm long. Find the area described by the minute hand on the face of the clock between 6 a.m. and 6.05 a.m.

The minute hand of a clock is sqrt(21) cm long. Find the area described by the minute hand on the face of the clock between 7.00 AM and 7.05 AM.

Length of a minute hand of a clock is 4.5 cm. Find the average velocity of the tip of minute's hand between 6 A.M. to 6.30 A.M. & 6 A.M. to 6.30 P.M.

The length of minute hand of a clock is 14cm. Find the area swept by the minute hand in one minute. (U s epi(22)/7)

ICSE-AREA AND PERIMETER OF PLANE FIGURES-EXERCISE 20(C)
  1. The diameter of two circles are 32 cm and 24 cm. Find the radius of th...

    Text Solution

    |

  2. The radius of a circle is 5 m. Find the circumference of the circle wh...

    Text Solution

    |

  3. The circle of largest area is cut from a rectangular piece of card-boa...

    Text Solution

    |

  4. The following figure shows a square card-board ABCD of side 28 cm. Fou...

    Text Solution

    |

  5. The radii of two cirlces are in the ratio 3 : 8. If the difference be...

    Text Solution

    |

  6. The diameters of three circles are in the ratio 3 : 5 : 6. If the sum...

    Text Solution

    |

  7. Find the area of a ring shaped region enclosed between two concentric ...

    Text Solution

    |

  8. The circumference of a given circular park is 55 m. It is surrounded b...

    Text Solution

    |

  9. There are two circular gardens A and B. The circumference of garden ...

    Text Solution

    |

  10. A wheel had diameter 84 cm. Find how many complete revolutions must it...

    Text Solution

    |

  11. The wheels of a car are of diameter 80 cm each. How many complete r...

    Text Solution

    |

  12. An express train is running between two stations with a uniform speed....

    Text Solution

    |

  13. The minute hand of a clock is 8 cm long. Find the area swept by the m...

    Text Solution

    |

  14. The shaded portion of the figure, given alongside, shows two concentri...

    Text Solution

    |

  15. In the figure, the area of the shaded portion is 770 cm^(2). If the ci...

    Text Solution

    |

  16. The cost of fencing a circular field at the rate of Rs 240 per metre i...

    Text Solution

    |

  17. Two circles touch each other externally. The sum of their areas is 58...

    Text Solution

    |

  18. The given figure shows a rectangle ABCD inscribed in a circle as shown...

    Text Solution

    |

  19. A square is inscribed in a circle of radius 7 cm. Find the area of the...

    Text Solution

    |

  20. A metal wire, when bent in the form of an equilateral triangle of larg...

    Text Solution

    |