Home
Class 9
MATHS
Rationlise the denominator and simplify...

Rationlise the denominator and simplify:
` (3)/( 4- sqrt3) `

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator and simplify the expression \(\frac{3}{4 - \sqrt{3}}\), we will follow these steps: ### Step 1: Multiply by the Conjugate To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \(4 - \sqrt{3}\) is \(4 + \sqrt{3}\). \[ \frac{3}{4 - \sqrt{3}} \times \frac{4 + \sqrt{3}}{4 + \sqrt{3}} \] ### Step 2: Apply the Multiplication Now, we will perform the multiplication in both the numerator and the denominator. **Numerator:** \[ 3 \times (4 + \sqrt{3}) = 12 + 3\sqrt{3} \] **Denominator:** Using the formula \(a^2 - b^2\) where \(a = 4\) and \(b = \sqrt{3}\): \[ (4 - \sqrt{3})(4 + \sqrt{3}) = 4^2 - (\sqrt{3})^2 = 16 - 3 = 13 \] ### Step 3: Combine the Results Now we can combine the results from the numerator and the denominator: \[ \frac{12 + 3\sqrt{3}}{13} \] ### Final Expression Thus, the rationalized and simplified form of \(\frac{3}{4 - \sqrt{3}}\) is: \[ \frac{12 + 3\sqrt{3}}{13} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Rationlise the denominator and simplify: (1)/(2sqrt5-sqrt3)

Rationlise the denominator and simplify: ( 12sqrt2)/( sqrt3+ sqrt6)

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

Rationalies the denominator and simplify: (i) (1+sqrt(2))/(3-2sqrt(2)) (ii) (2sqrt(6)-\ sqrt(5))/(3sqrt(5)-\ 2sqrt(6))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationalize the denominator and simplify to find the value of 4/(sqrt(5)+sqrt(3)) , given that sqrt(5)=2.236 and sqrt(3)=1.732