Home
Class 9
MATHS
Rationlise the denominator and simplify...

Rationlise the denominator and simplify:
` (2)/(sqrt5+ sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator and simplify the expression \( \frac{2}{\sqrt{5} + \sqrt{3}} \), follow these steps: ### Step 1: Multiply by the Conjugate To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \( \sqrt{5} + \sqrt{3} \) is \( \sqrt{5} - \sqrt{3} \). \[ \frac{2}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} \] ### Step 2: Apply the Multiplication Now, we multiply the numerators and the denominators: \[ = \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} \] ### Step 3: Simplify the Denominator Using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \): \[ = \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2} \] Calculating the squares: \[ = \frac{2(\sqrt{5} - \sqrt{3})}{5 - 3} \] ### Step 4: Simplify Further Now, simplify the denominator: \[ = \frac{2(\sqrt{5} - \sqrt{3})}{2} \] ### Step 5: Cancel the Common Factor The 2 in the numerator and denominator cancels out: \[ = \sqrt{5} - \sqrt{3} \] ### Final Result Thus, the simplified expression is: \[ \sqrt{5} - \sqrt{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Rationlise the denominator and simplify: (3)/( 4- sqrt3)

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationlise the denominator and simplify: (1)/(2sqrt5-sqrt3)

Rationlise the denominator and simplify: ( 12sqrt2)/( sqrt3+ sqrt6)

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationalies the denominator and simplify: (i) (1+sqrt(2))/(3-2sqrt(2)) (ii) (2sqrt(6)-\ sqrt(5))/(3sqrt(5)-\ 2sqrt(6))

Rationalize the denominator and simplify to find the value of 4/(sqrt(5)+sqrt(3)) , given that sqrt(5)=2.236 and sqrt(3)=1.732