Home
Class 9
MATHS
Rationlise the denominator and simplify...

Rationlise the denominator and simplify:
` ( 12sqrt2)/( sqrt3+ sqrt6)`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator and simplify the expression \( \frac{12\sqrt{2}}{\sqrt{3} + \sqrt{6}} \), follow these steps: ### Step 1: Multiply by the Conjugate To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{3} - \sqrt{6} \). \[ \frac{12\sqrt{2}}{\sqrt{3} + \sqrt{6}} \times \frac{\sqrt{3} - \sqrt{6}}{\sqrt{3} - \sqrt{6}} = \frac{12\sqrt{2}(\sqrt{3} - \sqrt{6})}{(\sqrt{3} + \sqrt{6})(\sqrt{3} - \sqrt{6})} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator using the difference of squares formula: \[ (\sqrt{3})^2 - (\sqrt{6})^2 = 3 - 6 = -3 \] So, the expression becomes: \[ \frac{12\sqrt{2}(\sqrt{3} - \sqrt{6})}{-3} \] ### Step 3: Simplify the Numerator Now, we can simplify the numerator: \[ 12\sqrt{2}(\sqrt{3} - \sqrt{6}) = 12\sqrt{6} - 12\sqrt{12} \] ### Step 4: Combine and Simplify Now we can write the expression as: \[ \frac{12\sqrt{2}(\sqrt{3} - \sqrt{6})}{-3} = -4\sqrt{2}(\sqrt{3} - \sqrt{6}) \] Distributing the negative sign gives us: \[ -4\sqrt{6} + 4\sqrt{3} \] ### Final Answer Thus, the simplified expression is: \[ 4\sqrt{3} - 4\sqrt{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationlise the denominator and simplify: (3)/( 4- sqrt3)

Rationlise the denominator and simplify: (1)/(2sqrt5-sqrt3)

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationalies the denominator and simplify: (i) (1+sqrt(2))/(3-2sqrt(2)) (ii) (2sqrt(6)-\ sqrt(5))/(3sqrt(5)-\ 2sqrt(6))

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

Rationalise the denominator of : ( 1) / ( sqrt 6 ) + ( 1)/( sqrt5 )