Home
Class 9
MATHS
Rationlise the denominator and simplify...

Rationlise the denominator and simplify:
` (1)/(2sqrt5-sqrt3) `

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator of the expression \( \frac{1}{2\sqrt{5} - \sqrt{3}} \) and simplify it, follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \frac{1}{2\sqrt{5} - \sqrt{3}} \] ### Step 2: Multiply by the conjugate To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \( 2\sqrt{5} - \sqrt{3} \) is \( 2\sqrt{5} + \sqrt{3} \). Thus, we have: \[ \frac{1}{2\sqrt{5} - \sqrt{3}} \cdot \frac{2\sqrt{5} + \sqrt{3}}{2\sqrt{5} + \sqrt{3}} \] ### Step 3: Simplify the numerator The numerator becomes: \[ 1 \cdot (2\sqrt{5} + \sqrt{3}) = 2\sqrt{5} + \sqrt{3} \] ### Step 4: Simplify the denominator using the difference of squares The denominator is: \[ (2\sqrt{5} - \sqrt{3})(2\sqrt{5} + \sqrt{3}) = (2\sqrt{5})^2 - (\sqrt{3})^2 \] Calculating this gives: \[ (2\sqrt{5})^2 = 4 \cdot 5 = 20 \] \[ (\sqrt{3})^2 = 3 \] So, the denominator simplifies to: \[ 20 - 3 = 17 \] ### Step 5: Combine the results Now we can write the expression as: \[ \frac{2\sqrt{5} + \sqrt{3}}{17} \] ### Final Result Thus, the rationalized and simplified expression is: \[ \frac{2\sqrt{5} + \sqrt{3}}{17} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationlise the denominator and simplify: (3)/( 4- sqrt3)

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Rationlise the denominator and simplify: (sqrt5+sqrt3)/(sqrt5-sqrt3)

Rationlise the denominator and simplify: ( 12sqrt2)/( sqrt3+ sqrt6)

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Rationalies the denominator and simplify: (i) (1+sqrt(2))/(3-2sqrt(2)) (ii) (2sqrt(6)-\ sqrt(5))/(3sqrt(5)-\ 2sqrt(6))

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationalize the denominator and simplify to find the value of 4/(sqrt(5)+sqrt(3)) , given that sqrt(5)=2.236 and sqrt(3)=1.732