Home
Class 9
MATHS
Rationlise the denominator and simplify...

Rationlise the denominator and simplify:
` (sqrt5+sqrt3)/(sqrt5-sqrt3) `

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominator and simplify the expression \((\sqrt{5} + \sqrt{3}) / (\sqrt{5} - \sqrt{3})\), follow these steps: ### Step 1: Multiply by the Conjugate Multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \((\sqrt{5} - \sqrt{3})\) is \((\sqrt{5} + \sqrt{3})\). \[ \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \cdot \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} \] ### Step 2: Simplify the Denominator Use the difference of squares formula \(a^2 - b^2\) to simplify the denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] ### Step 3: Expand the Numerator Now expand the numerator \((\sqrt{5} + \sqrt{3})^2\): \[ (\sqrt{5} + \sqrt{3})^2 = (\sqrt{5})^2 + 2(\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2 = 5 + 2\sqrt{15} + 3 = 8 + 2\sqrt{15} \] ### Step 4: Combine the Results Now, substitute the simplified numerator and denominator back into the expression: \[ \frac{8 + 2\sqrt{15}}{2} \] ### Step 5: Simplify the Expression Divide each term in the numerator by the denominator: \[ \frac{8}{2} + \frac{2\sqrt{15}}{2} = 4 + \sqrt{15} \] ### Final Result Thus, the simplified expression is: \[ \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = 4 + \sqrt{15} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Rationlise the denominator and simplify: (2)/(sqrt5+ sqrt3)

Rationlise the denominator and simplify: (1)/(2sqrt5-sqrt3)

Rationlise the denominator and simplify: (3)/( 4- sqrt3)

Rationlise the denominator and simplify: ( 12sqrt2)/( sqrt3+ sqrt6)

Rationlise the denominator and simplify: ( 1)/( 2+ sqrt 3)

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Rationales the denominator and simplify: (i) (sqrt(3)-\ sqrt(2))/(sqrt(3)\ +\ sqrt(2)) (ii) (5+2\ sqrt(3))/(7+4\ sqrt(3))

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)