Home
Class 9
MATHS
Simplify : ( 5- sqrt(10 ))/( 5+ sqrt...

Simplify :
` ( 5- sqrt(10 ))/( 5+ sqrt( 10 ) ) -( 5+ sqrt(10 ))/( 5-sqrt(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((5 - \sqrt{10})/(5 + \sqrt{10}) - (5 + \sqrt{10})/(5 - \sqrt{10})\), we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((5 + \sqrt{10})(5 - \sqrt{10})\). ### Step 2: Rewrite the fractions We can rewrite the expression as: \[ \frac{(5 - \sqrt{10})^2 - (5 + \sqrt{10})^2}{(5 + \sqrt{10})(5 - \sqrt{10})} \] ### Step 3: Expand the numerators Using the identity \(a^2 - b^2 = (a - b)(a + b)\), we can expand the numerators: - For \((5 - \sqrt{10})^2\): \[ (5 - \sqrt{10})^2 = 5^2 - 2 \cdot 5 \cdot \sqrt{10} + (\sqrt{10})^2 = 25 - 10\sqrt{10} + 10 = 35 - 10\sqrt{10} \] - For \((5 + \sqrt{10})^2\): \[ (5 + \sqrt{10})^2 = 5^2 + 2 \cdot 5 \cdot \sqrt{10} + (\sqrt{10})^2 = 25 + 10\sqrt{10} + 10 = 35 + 10\sqrt{10} \] ### Step 4: Substitute back into the expression Now substituting back, we have: \[ \frac{(35 - 10\sqrt{10}) - (35 + 10\sqrt{10})}{(5 + \sqrt{10})(5 - \sqrt{10})} \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ 35 - 10\sqrt{10} - 35 - 10\sqrt{10} = -20\sqrt{10} \] ### Step 6: Simplify the denominator The denominator simplifies as follows: \[ (5 + \sqrt{10})(5 - \sqrt{10}) = 5^2 - (\sqrt{10})^2 = 25 - 10 = 15 \] ### Step 7: Combine the results Now we can combine the results: \[ \frac{-20\sqrt{10}}{15} \] ### Step 8: Simplify the fraction This can be simplified by dividing both the numerator and the denominator by 5: \[ \frac{-4\sqrt{10}}{3} \] ### Final Answer Thus, the simplified expression is: \[ -\frac{4\sqrt{10}}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Simplify : 3/(5-sqrt(3))+2/(5+\ sqrt(3))

Simplify : (3) / ( 5- sqrt3) + (2)/(5+ sqrt3)

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)

Simplify: (sqrt(5+12 i)+sqrt(5-12 i))/(sqrt(5+12 i)-sqrt(5-12 i))

Simplify: (i) (5+\ sqrt(5))\ (5-\ sqrt(5)) (ii) (3+2sqrt(2))\ (3-2sqrt(2))

Simplify: (i) (7+3\ sqrt(5))/(3+\ sqrt(5))-(7-3\ sqrt(5))/(3-\ sqrt(5)) (ii) 1/(2+sqrt(3)\ )+2/(sqrt(5)-\ sqrt(3))+1/(2-\ sqrt(5))

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

Simplify : (i) (5+sqrt(5))(5-sqrt(5)) (ii) (3+2sqrt(2))(3-2sqrt(2))

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

Simplify: (4+\ sqrt(5))/(4-sqrt(5))+(4-\ sqrt(5))/(4+\ sqrt(5))