Home
Class 9
MATHS
Find the value of m and n : if : ( 3+...

Find the value of m and n : if :
` ( 3+ sqrt2 )/( 3- sqrt2) = m + n sqrt2 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3 + \sqrt{2}}{3 - \sqrt{2}} = m + n \sqrt{2}\), we will follow these steps: ### Step 1: Rationalize the Denominator We start with the left-hand side (LHS): \[ \frac{3 + \sqrt{2}}{3 - \sqrt{2}} \] To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(3 + \sqrt{2}\): \[ \frac{(3 + \sqrt{2})(3 + \sqrt{2})}{(3 - \sqrt{2})(3 + \sqrt{2})} \] ### Step 2: Simplify the Denominator Using the difference of squares formula, the denominator simplifies as follows: \[ (3 - \sqrt{2})(3 + \sqrt{2}) = 3^2 - (\sqrt{2})^2 = 9 - 2 = 7 \] ### Step 3: Expand the Numerator Now, we expand the numerator: \[ (3 + \sqrt{2})(3 + \sqrt{2}) = 3^2 + 2 \cdot 3 \cdot \sqrt{2} + (\sqrt{2})^2 = 9 + 6\sqrt{2} + 2 = 11 + 6\sqrt{2} \] ### Step 4: Combine the Results Now, we can combine the results from the numerator and the denominator: \[ \frac{11 + 6\sqrt{2}}{7} \] This can be separated into two fractions: \[ \frac{11}{7} + \frac{6\sqrt{2}}{7} \] ### Step 5: Compare with the Right-Hand Side Now we have: \[ \frac{11}{7} + \frac{6\sqrt{2}}{7} = m + n\sqrt{2} \] From this, we can compare coefficients: - The constant term gives us \(m = \frac{11}{7}\) - The coefficient of \(\sqrt{2}\) gives us \(n = \frac{6}{7}\) ### Final Answer Thus, the values of \(m\) and \(n\) are: \[ m = \frac{11}{7}, \quad n = \frac{6}{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Find the value of m and n : if : ( 5+ 2sqrt3)/( 7+ 4sqrt3) = m + n sqrt3

find the value of ( 3 + sqrt3 ) xx ( 2 + sqrt2 )

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

Find the values of a and b if : (2sqrt(3)+3sqrt(2))/(2sqrt(3)-3sqrt(2))=a+bsqrt(6)

Find the values of a and b in each of the (3)/(sqrt(3)-sqrt(2))= a sqrt(3)-bsqrt(2)

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqrt(8))^(2)

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Find the value of 6/(sqrt(5)-\ sqrt(3)) , it being given that sqrt(3)=1. 732\ \ a n d\ \ sqrt(5)=2. 236

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)