Home
Class 9
MATHS
Given ((8)/(27))^(x- 1) = ((9)/(4))^(2x...

Given ` ((8)/(27))^(x- 1) = ((9)/(4))^(2x+ 1)` , find the value of x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{8}{27}\right)^{x-1} = \left(\frac{9}{4}\right)^{2x+1}\), we can follow these steps: ### Step 1: Rewrite the bases in terms of powers We know that: - \(8 = 2^3\) - \(27 = 3^3\) - \(9 = 3^2\) - \(4 = 2^2\) Thus, we can rewrite the equation as: \[ \left(\frac{2^3}{3^3}\right)^{x-1} = \left(\frac{3^2}{2^2}\right)^{2x+1} \] ### Step 2: Simplify the fractions This can be rewritten as: \[ \left(\frac{2}{3}\right)^{3(x-1)} = \left(\frac{3}{2}\right)^{2(2x+1)} \] ### Step 3: Rewrite the right-hand side Notice that \(\frac{3}{2} = \left(\frac{2}{3}\right)^{-1}\). Therefore, we can rewrite the right-hand side: \[ \left(\frac{2}{3}\right)^{3(x-1)} = \left(\frac{2}{3}\right)^{-2(2x+1)} \] ### Step 4: Set the exponents equal Since the bases are the same, we can equate the exponents: \[ 3(x-1) = -2(2x+1) \] ### Step 5: Expand both sides Expanding both sides gives: \[ 3x - 3 = -4x - 2 \] ### Step 6: Combine like terms Now, we can add \(4x\) to both sides and add \(3\) to both sides: \[ 3x + 4x = -2 + 3 \] \[ 7x = 1 \] ### Step 7: Solve for \(x\) Dividing both sides by \(7\): \[ x = \frac{1}{7} \] Thus, the value of \(x\) is \(\frac{1}{7}\). ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If 3^(x+1)=9^(x-2), find the value of 2^(1+x)

Solve : (2x)/(3)-(x-1)/(6)+(7x-1)/(4)=2(1)/(6) . Hence, find the value of 'a', if (1)/(a)+5x=8 .

If x-1/x=9, find the value of x^2+1/(x^2)

(sqrt(x)-1)^(2)=8-sqrt(28) find the value of x

If 9^(x+2)=720+9^x , find the value of (4x)^(1/x)

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If 2x+3y=13 and x y=6 , find the value of 8x^3+27 y^3

If 2x+3y=13 and x y=6 , find the value of 8x^3+27\ y^3

If 2x+3y=13 and x y=6, find the value of 8x^3+27 y^3