Home
Class 9
MATHS
If x^(a) = y^(b) = z^ (c ) and y^(2) ...

If ` x^(a) = y^(b) = z^ (c ) and y^(2) = xz, ` prove that ` b= ( 2ac)/( a+c) `

Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a,b,c are in G.P. and a,x,b,y,c are in A.P., prove that : (a)/(x)+(c )/(y)=2 .

If x = a sec A cos B, y = b sec A sin B and z = c tan A, show that : (x^(2))/ (a^(2)) + (y^(2))/ (b^(2)) - (z^(2))/(c^(2)) = 1

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If a, b, c are in G.P. and a^(1/x)=b^(1/y)=c^(1/z), prove that x, y, z are in A.P.

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :