Home
Class 9
MATHS
Evaluate : (1)/( ( 216)^((-2)/(3)) ...

Evaluate :
` (1)/( ( 216)^((-2)/(3)) ) + (1)/((27) ^((-4)/(3))) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \frac{1}{(216)^{-\frac{2}{3}}} + \frac{1}{(27)^{-\frac{4}{3}}} \), we will follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression as: \[ \frac{1}{216^{-\frac{2}{3}}} + \frac{1}{27^{-\frac{4}{3}}} \] ### Step 2: Apply the property of exponents Using the property \( a^{-m} = \frac{1}{a^m} \), we can rewrite the expression: \[ 216^{-\frac{2}{3}} = \frac{1}{216^{\frac{2}{3}}} \quad \text{and} \quad 27^{-\frac{4}{3}} = \frac{1}{27^{\frac{4}{3}}} \] Thus, the expression becomes: \[ 216^{\frac{2}{3}} + 27^{\frac{4}{3}} \] ### Step 3: Simplify \( 216^{\frac{2}{3}} \) We know that \( 216 = 6^3 \), so we can write: \[ 216^{\frac{2}{3}} = (6^3)^{\frac{2}{3}} = 6^{3 \cdot \frac{2}{3}} = 6^2 = 36 \] ### Step 4: Simplify \( 27^{\frac{4}{3}} \) Similarly, since \( 27 = 3^3 \), we have: \[ 27^{\frac{4}{3}} = (3^3)^{\frac{4}{3}} = 3^{3 \cdot \frac{4}{3}} = 3^4 = 81 \] ### Step 5: Add the results Now we can add the two results: \[ 36 + 81 = 117 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{117} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))

Evaluate : 27^(-1//3)

Evaluate: sqrt(( 1)/(4)) + (0.01) ^(-(1)/(2)) xx (5) - (27)^((2)/(3))

Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

Evaluate : [5(8^((1)/(3))+ 27 ^((1)/(3))) ^(3) ]^((1)/(4))

Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))xx((25)/(9))^(-(1)/(2))

Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify: 4/((216)^(-2/3))+1/((256)^(-3/4))+2/((243)^(-1/5))

Simplify : 27^(-(1)/(3))(27^((1)/(3))-27^((2)/(3)))