Home
Class 9
MATHS
Evaluate : [5(8^((1)/(3))+ 27 ^((1)/(...

Evaluate :
` [5(8^((1)/(3))+ 27 ^((1)/(3))) ^(3) ]^((1)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \left[ 5(8^{\frac{1}{3}} + 27^{\frac{1}{3}})^{3} \right]^{\frac{1}{4}} \), we can follow these steps: ### Step 1: Simplify the cube roots First, we simplify \( 8^{\frac{1}{3}} \) and \( 27^{\frac{1}{3}} \): - \( 8 = 2^3 \) so \( 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{1} = 2 \) - \( 27 = 3^3 \) so \( 27^{\frac{1}{3}} = (3^3)^{\frac{1}{3}} = 3^{1} = 3 \) ### Step 2: Substitute back into the expression Now substitute these values back into the expression: \[ 5(8^{\frac{1}{3}} + 27^{\frac{1}{3}}) = 5(2 + 3) = 5 \times 5 = 25 \] ### Step 3: Cube the result Next, we cube the result: \[ (25)^{3} = 15625 \] ### Step 4: Take the fourth root Finally, we take the fourth root of \( 15625 \): \[ \left(15625\right)^{\frac{1}{4}} \] To find \( \left(15625\right)^{\frac{1}{4}} \), we can recognize that: \[ 15625 = 25^3 = (5^2)^3 = 5^6 \] Thus, \[ \left(15625\right)^{\frac{1}{4}} = (5^6)^{\frac{1}{4}} = 5^{\frac{6}{4}} = 5^{\frac{3}{2}} = 5^{1.5} = 5 \sqrt{5} \] ### Final Answer So, the final answer is: \[ 5 \sqrt{5} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (1)/( ( 216)^((-2)/(3)) ) + (1)/((27) ^((-4)/(3)))

Evaluate : ((27)/(8))^((2)/(3))-((1)/(4))^(-2)+5^(0)

Evaluate: g. 5 (1)/(3) xx 8 (1)/(4) xx 2 (3)/(5)

Evaluate : 27^(-1//3)

Evaluate: c. 5 (1)/(4) xx 3 (5)/(6) + 1 (3)/(5) div 5 (1)/(3)

Simplify : 27^(-(1)/(3))(27^((1)/(3))-27^((2)/(3)))

Evaluate: sqrt(( 1)/(4)) + (0.01) ^(-(1)/(2)) xx (5) - (27)^((2)/(3))

Evaluate : [(3sqrt(8))-(1)/(2)]^(4).

Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

Evaluate : (1)/(3!)+(1)/(4!)+(1)/(5!)