Home
Class 9
MATHS
If ((3(1)/(4) )^(4) -(4( 1)/(3))^(4))/(...

If ` ((3(1)/(4) )^(4) -(4( 1)/(3))^(4))/( (3,(1)/(4) )^(2) -(4,(1)/(3))^(2) )= ((13a)/(12))^(2) ,` find a.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation \[ \frac{(3 \cdot \frac{1}{4})^4 - (4 \cdot \frac{1}{3})^4}{(3 \cdot \frac{1}{4})^2 - (4 \cdot \frac{1}{3})^2} = \left(\frac{13a}{12}\right)^2, \] we will follow these steps: ### Step 1: Simplify the numerator and denominator First, we simplify the terms in the numerator and denominator. - The numerator is: \[ (3 \cdot \frac{1}{4})^4 - (4 \cdot \frac{1}{3})^4 = \left(\frac{3}{4}\right)^4 - \left(\frac{4}{3}\right)^4. \] - The denominator is: \[ (3 \cdot \frac{1}{4})^2 - (4 \cdot \frac{1}{3})^2 = \left(\frac{3}{4}\right)^2 - \left(\frac{4}{3}\right)^2. \] ### Step 2: Apply the difference of squares We can use the difference of squares formula, \( a^2 - b^2 = (a - b)(a + b) \). Let: - \( a = \frac{3}{4} \) - \( b = \frac{4}{3} \) Thus, we have: \[ \left(\frac{3}{4}\right)^4 - \left(\frac{4}{3}\right)^4 = \left(\frac{3}{4} - \frac{4}{3}\right)\left(\frac{3}{4} + \frac{4}{3}\right). \] ### Step 3: Calculate \( a - b \) and \( a + b \) Calculating \( a - b \): \[ \frac{3}{4} - \frac{4}{3} = \frac{9 - 16}{12} = -\frac{7}{12}. \] Calculating \( a + b \): \[ \frac{3}{4} + \frac{4}{3} = \frac{9 + 16}{12} = \frac{25}{12}. \] ### Step 4: Substitute back into the numerator The numerator becomes: \[ \left(-\frac{7}{12}\right)\left(\frac{25}{12}\right) = -\frac{175}{144}. \] ### Step 5: Simplify the denominator The denominator is: \[ \left(\frac{3}{4}\right)^2 - \left(\frac{4}{3}\right)^2 = \left(\frac{3}{4} - \frac{4}{3}\right)\left(\frac{3}{4} + \frac{4}{3}\right). \] Using the same calculations for \( a - b \) and \( a + b \): \[ \left(\frac{3}{4}\right)^2 - \left(\frac{4}{3}\right)^2 = \left(-\frac{7}{12}\right)\left(\frac{25}{12}\right) = -\frac{175}{144}. \] ### Step 6: Substitute into the equation Now substituting back into the equation: \[ \frac{-\frac{175}{144}}{-\frac{175}{144}} = 1. \] Thus, we have: \[ 1 = \left(\frac{13a}{12}\right)^2. \] ### Step 7: Solve for \( a \) Taking square roots: \[ \frac{13a}{12} = 1 \quad \text{or} \quad \frac{13a}{12} = -1. \] From \( \frac{13a}{12} = 1 \): \[ 13a = 12 \implies a = \frac{12}{13}. \] From \( \frac{13a}{12} = -1 \): \[ 13a = -12 \implies a = -\frac{12}{13}. \] ### Final Answer Thus, the values of \( a \) are: \[ a = \frac{12}{13} \quad \text{or} \quad a = -\frac{12}{13}. \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))^(2) + (1.3.5)/(3!) ((1)/(4))^(3)+ ... to infty , is

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

The sum to n terms of the series 1+ 5 ((4n +1)/(4n - 3)) + 9 ((4n +1) /( 4n -3)) ^(2) + 13 ((4n +1)/( 4n -3)) ^(3) + ((4n + 1 )/( 4n -3)) ^(2)+ ……. is .

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3))

Let A = {1,2,3,4} and f : A to A satisfy f (1) =2, f(2)=3, f(3)=4, f (4)=1. Suppose g:A to A satisfies g (1) =3 and fog = gof , then g = (a).{(1,3), (2,1), (3,2), (4,4)} (b).{(1,3), (2,4),(3,1),(4,2)} (c).{(1,3),(2,2),(3,4),(4,3)} (d).{(1,3),(2,4),(3,2),(4,1)}

Find the value of: (i) (-4) -: 2/3 (ii) (-3)/5 -: 2 (iii) (-4)/5 -: (-3) (iv) (-1)/8 -: 3/4 (v) (-2)/(13) -: 1/7 (vi) (-7)/(12) -: ((-2)/(13)) (vii) 3/(13) -: ((-4)/(65))

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

The series expansion of log[(1 + x)^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]