Home
Class 9
MATHS
If a= -1 and b= 2 find : a^(b) - b^(...

If a= -1 and b= 2 find :
` a^(b) - b^(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a^b - b^a \) given \( a = -1 \) and \( b = 2 \), we will follow these steps: ### Step 1: Substitute the values of \( a \) and \( b \) We have: - \( a = -1 \) - \( b = 2 \) Substituting these values into the expression gives us: \[ (-1)^2 - 2^{-1} \] ### Step 2: Calculate \( (-1)^2 \) Now, we calculate \( (-1)^2 \): \[ (-1)^2 = 1 \] ### Step 3: Calculate \( 2^{-1} \) Next, we calculate \( 2^{-1} \): \[ 2^{-1} = \frac{1}{2} \] ### Step 4: Substitute the results back into the expression Now we substitute the results back into the expression: \[ 1 - \frac{1}{2} \] ### Step 5: Simplify the expression To simplify \( 1 - \frac{1}{2} \), we can convert \( 1 \) into a fraction: \[ 1 = \frac{2}{2} \] So, \[ \frac{2}{2} - \frac{1}{2} = \frac{2 - 1}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of \( a^b - b^a \) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a= -1 and b= 2 find : a^(b) xx b^(a)

If a= -1 and b= 2 find : a^(2) + b^(2)

If a+ b =1 and a-b =7, find : a^(2) +b^(2)

If a+ b = 4 and ab =3 , find (1)/(b^(2)) + (1)/(a^(2))

If a=2 and b=5, then evaluate a^(b)+b^(a) .

If a=2 and b=3 then find the values of each of the following (i) a^a + b^b (ii) a^b + b^a (iii) a^b (iv) (a/b)^a (v) (1/a +1/b)^a (vi) (ab)^b

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)

If a=2 and b=3, then find the values of each of the following: (i) a^a+b^b (ii) a^b+b^a (iii) a^b (a/b)^a (iv) (1/a+1/b)^a

If a=2 and b=3 , then find the values of each of the following: (a) (a/b)^a (b) (1/a+1/b)^a