Home
Class 9
MATHS
If a= -1 and b= 2 find : a^(b) xx b^...

If a= -1 and b= 2 find :
` a^(b) xx b^(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a = -1 \) and \( b = 2 \), we need to find the value of \( a^b \times b^a \). ### Step-by-Step Solution: 1. **Identify the values of a and b**: - Given \( a = -1 \) and \( b = 2 \). 2. **Calculate \( a^b \)**: - We need to compute \( a^b = (-1)^2 \). - Since \( (-1)^2 = 1 \) (because multiplying -1 by itself gives 1). 3. **Calculate \( b^a \)**: - Now we compute \( b^a = 2^{-1} \). - By the property of exponents, \( 2^{-1} = \frac{1}{2} \) (because a negative exponent indicates the reciprocal). 4. **Combine the results**: - Now we multiply the results from the previous steps: \[ a^b \times b^a = 1 \times \frac{1}{2} = \frac{1}{2}. \] 5. **Final answer**: - Therefore, the value of \( a^b \times b^a \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a= -1 and b= 2 find : a^(b) // b^(a)

If a= -1 and b= 2 find : a^(b) - b^(a)

If a= -1 and b= 2 find : a^(2) + b^(2)

If a+ b =1 and a-b =7, find : a^(2) +b^(2)

If a+ b = 4 and ab =3 , find (1)/(b^(2)) + (1)/(a^(2))

If a=2 and b=3, then find the values of each of the following: (i) a^a+b^b (ii) a^b+b^a (iii) a^b (a/b)^a (iv) (1/a+1/b)^a

If A = {1, 2, 3) and B = {m, n}, find A xx B and B xx A . Are these two products equal ?

If a=2 and b=3 , then find the values of each of the following: (a) (a/b)^a (b) (1/a+1/b)^a

If a=2 and b=3 , then find the values of each of the following: (a) (a/b)^a (b) (1/a+1/b)^a

(a) If n(A) = 6 and n(AxxB)=42 then find n(B) (b) If some of the elements of A xx B are (x,p),(p,q), (r,s) . Then find the minimum value of n(A xx B) .