Home
Class 9
MATHS
In a quadrilateral ABCD angle B = angle...

In a quadrilateral ABCD ` angle B = angle D = 90 ^(@) ` Prove that : ` 2AC^(2) - BC^(2) = AB^(2) + AD^(2) +DC^(2) `

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Rectillinear figures|24 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Area theorems|11 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Mid-point and intercept theorem|11 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

In a quadrilateral ABCD, angleB=90^(@) and angleD=90^(@) . Prove that : " "2AC^(2)-AB^(2)=BC^(2)+CD^(2)+DA^(2)

In a quadrilateral ABCD, angleA+angleD=90^(@) . Prove that AC^(2)+BD^(2)=AD^(2)+BC^(2)

In a quadrilateral ABCD, AB = CD and angle B = angle C . Prove that AC = AB

In a quadrilateral ABCD, AB = CD and angle B = angle C . Prove that AD is parallel to BC.

In triangleABC , angleA= 60^(@) prove that BC^(2)= AB^(2)+AC^(2)- AB . AC

In a rhombus ABCD, prove that AC^(2) + BD^(2) = 4AB^(2)

In a quadrilateral A B C D , given that /_A+/_D=90o . Prove that A C^2+B D^2=A D^2+B C^2 .

In a quadrilateral ABCD, AB= AD and CB= CD. Prove that: AC bisects angle BAD

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

ABC is a triangle, right angled at B, M is a point on BC. Prove that : AM^(2) + BC^(2) = AC^(2) + BM^(2)